Loading…

AML with Translocation T(8;16) Shows Unique Cytomorphological, Cytogenetic, Molecular, and Prognostic Features and Therefore Qualifies as An Own Entity According to WHO Criteria

Balanced chromosomal rearrangements define distinct biological subsets in acute myeloid leukemia (AML). It is recognized that recurrent balanced aberrations, such as t(15;17), t(8;21), inv(16), and 11q23/MLL translocations, show a close correlation to cytomorphology and also harbor specific gene exp...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2008-11, Vol.112 (11), p.1197-1197
Main Authors: Kohlmann, Alexander, Dugas, Martin, Klein, Hans-Ulrich, Ruckert, Christian, Kern, Wolfgang, Schnittger, Susanne, Löffler, Helmut, Haferlach, Claudia, Haferlach, Torsten
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Balanced chromosomal rearrangements define distinct biological subsets in acute myeloid leukemia (AML). It is recognized that recurrent balanced aberrations, such as t(15;17), t(8;21), inv(16), and 11q23/MLL translocations, show a close correlation to cytomorphology and also harbor specific gene expression signatures. We here present a cohort of 13 AML cases with t(8;16)(p11;p13). This translocation is rare with only 13 cases (6 males, 7 females) diagnosed from our overall cohort of 6124 cases of AML over recent years, and is more frequently found in therapy-related AML than in de novo AML (7/438 t-AML, and 6/5686 de novo, p=0.00001). Prognosis was poor with median overall survival of 4.7 months. Five patients deceased within the first month after diagnosis. AML with t(8;16) is characterized by striking cytomorphologic features: In all 13 cases the positivity for myeloperoxidase (MPO) on bone marrow smears was >30% (median: 85%) and intriguingly, in parallel also >40% (median: 88%) of blast cells stained strongly positive for non-specific esterase (NSE) in the same cell, suggesting that AML with t(8;16) arise from a very early stem cell with both myeloid and monoblastic differentiation potential. Therefore, AML with t(8;16) cases can not be classified according to standard FAB categories. Morphologically we also detected erythrophagocytosis in 7/13 cases, a specific feature in AML with t(8;16) that was previously described. With respect to cytogenetics, 6/13 patients had t(8;16)(p11;p13) as sole abnormality. 7/13 patients demonstrated additional non-recurrent abnormalities, 4 cases with single additional aberrations, and 3 cases with two or more additional aberrations. Molecular analyses detected the MYST3- CREBBP fusion transcript in all cases tested (12/12). We then compared gene expression patterns in 7 cases of AML with t(8;16) to: (i) AML FAB subtypes M1 and M4/5 with strong MPO or NSE with normal karyotype and to (ii) distinct AML subtypes with balanced chromosomal aberrations according to WHO classification. In a first series using Affymetrix HG-U133A+B microarrays 4 cases of AML with t(8;16) were compared to FAB M1 (n=46), M4 (n=41), M5a (n=9), and M5b (n=16). Hierarchical clustering and principal component analyses revealed that AML with t(8;16) were intercalating rather with FAB subtypes M4 and M5b and did not cluster near to FAB M1, although strong positivity for MPO was seen in all t(8;16) cases. Thus, monocytic characteristics influence the ge
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V112.11.1197.1197