Loading…

Modelling of TKI Resistance In CML Cell Lines: Kinase Domain Mutations Usually Arise In the Setting of BCR-ABL Overexpression

Abstract 3383 There are three currently identified secondary resistance mechanisms observed in chronic myeloid leukemia (CML) patients receiving tyrosine kinase inhibitors (TKIs). These include overexpression of drug-efflux proteins (ABCB1 and ABCG2), increased BCR-ABL expression, and mutations in t...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2010-11, Vol.116 (21), p.3383-3383
Main Authors: Tang, Carine, Schafranek, Lisa, Watkins, Dale, Parker, Wendy T, Prime, Jodi, White, Deborah L, Hughes, Timothy
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract 3383 There are three currently identified secondary resistance mechanisms observed in chronic myeloid leukemia (CML) patients receiving tyrosine kinase inhibitors (TKIs). These include overexpression of drug-efflux proteins (ABCB1 and ABCG2), increased BCR-ABL expression, and mutations in the kinase domain (KD) of BCR-ABL. We investigated the interplay between these three modes of resistance in vitro, as well as looking for other mechanisms. Three CML blast crisis cell lines (K562, its ABCB1-overexpressing variant, K562 Dox, and KU812) were cultured in gradually increasing concentrations of imatinib (IM) to 2μ M, or dasatinib (DAS) to 200nM. Two IM-resistant K562 lines were established, both with increased IC50s for IM (from 13.7μ M in naïve cells, to ~50μ M), as well as increased IC50s for DAS and nilotinib (NIL). No cell-surface expression of ABCB1 or ABCG2 was observed, nor were KD mutations present. However, BCR-ABL expression was seen to steadily increase in both lines from 178% in naïve cells, to ~380% and 1200% in the resistant lines, suggesting this was the major mode of resistance. However, when a DAS-resistant K562 culture was generated the T315I mutation emerged. Studies of the intermediate stages of resistance revealed that BCR-ABL overexpression occurred in a step-wise fashion, peaking at 1915% in the 3.5nM intermediate, but then dropping significantly to ~1000% in the 5nM intermediate (P=0.0003). BCR-ABL expression then stabilised at this level, and the T315I mutation was subsequently detected. Thus, it appears that BCR-ABL overexpression was the first mechanism of resistance detectable, but was followed by the emergence of a KD mutation which had a clear selective advantage. This sequential selection was observed a further four times: in a DAS-resistant K562 Dox culture, and in three IM-resistant KU812 cultures. BCR-ABL expression in the DAS-resistant K562 Dox culture increased from 186% in naïve cells to 540% in the final culture. Studies of intermediate cultures revealed that BCR-ABL expression peaked at 850% in the 55nM intermediate, but then dropped significantly to ~500% in the 75nM intermediate (P=0.004). This drop in BCR-ABL expression coincided with the appearance of the V299L mutation. Interestingly, the K562 Dox DAS-resistant line also displayed resistance to NIL and IM, likely conferred by BCR-ABL overexpression as the 55nM intermediate (with the highest BCR-ABL expression levels) had the highest IC50s for NIL and IM, whi
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V116.21.3383.3383