Loading…

BCL-2-Selective BH3 Mimetic ABT-199 Is a Potent Agent For Acute Myeloid Leukemia

Evasion of apoptosis is a key hallmark of cancer. BCL-2 family proteins, the central regulators of apoptosis, are often aberrantly expressed in tumors. Pro-apoptotic BCL-2 members bind and sequester anti-apoptotic BCL-2 proteins via their BH3 domains. Thus, BH3 mimetics represent a promising directi...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2013-11, Vol.122 (21), p.1456-1456
Main Authors: Pan, Rongqing, Debose, LaKeisha, Benito, Juliana M, Golfman, Leonard S, Zweidler-McKay, Patrick A, Han, Lina, Harutyunyan, Karine G., Mu, Hong, Ruvolo, Vivian R, Park, Eugene, Muschen, Markus, Leverson, Joel, Borthakur, Gautam, Kantarjian, Hagop M, Ruvolo, Peter P., Andreeff, Michael, Konopleva, Marina
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Evasion of apoptosis is a key hallmark of cancer. BCL-2 family proteins, the central regulators of apoptosis, are often aberrantly expressed in tumors. Pro-apoptotic BCL-2 members bind and sequester anti-apoptotic BCL-2 proteins via their BH3 domains. Thus, BH3 mimetics represent a promising direction in cancer drug development. ABT-263, designed as a BH3 mimetic to inhibit BCL-2, BCL-XL, and BCL-W, has demonstrated efficacy in preclinical and clinical studies. However, thrombocytopenia is common in patients treated with ABT-263 due to the inhibition of BCL-XL, which is indispensable for platelet survival. ABT-199 (GDC-0199), a second-generation BH3 mimetic, has higher affinities for BCL-2 protein (Ki < 0.01 nM), which enhances the specificity of this agent to kill cancer cells without provoking unwanted thrombocytopenia (Souers, et al, Nature Med, 2013). Since BCL-2 is often overexpressed in hematological malignancies including acute myeloid leukemia (AML), we evaluated the anti-cancer effects of ABT-199 on AML cells. As a measure of BCL-2 specificity, BCL-XL overexpression in sensitive HL-60 cells resulted in complete resistance to ABT-199, while BCL-2 overexpression in these cells conferred moderate resistance to apoptosis induction. Moreover, OCI-AML3 cells with high MCL-1 levels were highly resistant to ABT-199, while knockdown of this protein greatly sensitized cells to this BH3 mimetic. Among 12 genetically diverse AML cell lines tested, seven were sensitive to ABT-199-induced apoptosis with 48-h EC50 ranging from 1.5 nM to 145 nM. In these seven sensitive, BCL-2 dependent cell lines, ABT-199 was uniformly more potent than ABT-737 (another BCL-2 inhibitor with a spectrum similar to ABT-263, p = 0.016). Next, we tested ABT-199 in 15 primary samples from relapsed/refractory AML patients. Twelve patient samples showed high sensitivity to apoptosis induction following 48-h exposure to ABT-199 (EC50 < 10 nM). In a larger set of 23 cryopreserved AML patient samples, including AML cells with diploid cytogenetics and mutations in FLT3, NRAS, and NPM1 genes, 18 (78%) were sensitive to ABT-199 (100 nM). However, samples from patients with complex cytogenetics, t(8;21) and JAK2 mutation (n = 12) were largely insensitive to ABT-199 (17% response rate). Interestingly, in five of six primary AML samples with high blast counts, ABT-199 induced marked apoptosis in CD34+/CD38- AML stem/progenitor cells compared to bulk AML blasts (p = 0.01). Quantitative Western blo
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V122.21.1456.1456