Loading…
Concomitantly Targeting BCL-2 with Venetoclax (ABT-199/GDC-0199) and MAPK Signaling with Cobimetinib (GDC-0973) in Acute Myeloid Leukemia Models
Pro-survival molecules including BCL-2 play critical roles in leukemia transformation and chemoresistance. ABT-199/GDC-0199 (venetoclax) is an orally available BH3-mimetic that binds with high affinity to BCL-2, but lacks affinity for BCL-XL and MCL-1. We have recently demonstrated anti-leukemia pot...
Saved in:
Published in: | Blood 2015-12, Vol.126 (23), p.2544-2544 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pro-survival molecules including BCL-2 play critical roles in leukemia transformation and chemoresistance. ABT-199/GDC-0199 (venetoclax) is an orally available BH3-mimetic that binds with high affinity to BCL-2, but lacks affinity for BCL-XL and MCL-1. We have recently demonstrated anti-leukemia potency of venetoclax in acute myeloid leukemia (AML) models (Pan et al. Cancer Discovery 2014). However, venetoclax poorly inhibits MCL-1, causing resistance in leukemia cells that rely on MCL-1 for survival. The RAF/MEK/ERK (MAPK) cascade is a major effector pathway in AML that is activated by upstream mutant proteins such as FLT3, KIT and RAS. Additionally, the MAPK pathway regulates BCL-2 family proteins by stabilizing anti-apoptotic MCL-1 and inactivating pro-apoptotic BIM. In this study, we evaluated the anti-tumor effects of concomitant BCL-2 and MAPK blockade by venetoclax in combination with MEK1/2 inhibitor GDC-0973 (cobimetinib)..
We initially examined activity of these agents in a panel of myeloid leukemia cell lines with diverse genetic alterations (Fig. 1A). The IC50 values of cobimetinib ranged from < 0.01 µM to > 1 µM after 72 hours of drug treatment but did not correlate with the basal level of p-ERK1/2. In 7 out of 11 cell lines, combination of the agents elicited synergistic growth inhibition. Notably synergism of venetoclax with cobimetinib was observed in venetoclax-resistant cell lines (MOLM14, OCI-AML3, NB4 and THP1). Ongoing analysis of pharmacodynamic markers include transcriptome assessment by RNA sequencing, functional proteomics by reverse phase protein array (RPPA) and quantification of BCL-2:BIM and MCL-1:BIM complexes using the electrochemiluminescent ELISA assay (Meso Scale Discovery, MSD-ELISA). The preliminary MSD data revealed that BCL-2:BIM complex was disrupted in most cell lines and accumulated following cobimetinib treatment, which may be due to the disruption of MCL-1:BIM complex by inhibition of MEK (Fig. 1B).
In a long-term culture of primary AML blasts in serum-free stem cell growth medium supplemented with cytokines and StemRegenin 1 (SR1) to main the immature state of leukemia cells, the combination of venetoclax and cobimetinib induced distinct apoptotic cell death, with AML #1 sensitive to venetoclax but resistant to cobimetinib. Alternatively, AML #2 and #3 samples were resistant to venetoclax but sensitive to cobimetinib and the combination of both drugs (Fig. 1C). We next investigated signaling patterns and BCL-2 fa |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V126.23.2544.2544 |