Loading…
Expression and in Vitro Binding of Protease Activated Receptor1 (PAR1) with Novel Anti-PAR1 Molecules: Data on Fresh Myeloma Marrow Plasma Cells and Human Myeloma Cell Lines
Introduction and Aim: Myeloma plasma cells are dependent on stromal support which is mediated through cell adhesion. Heparanase activity has been shown to be associated with aggressive behavior or Bortezomib resistance and can lead to increased levels of proteases as well as shedding of heparan sulf...
Saved in:
Published in: | Blood 2015-12, Vol.126 (23), p.4440-4440 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction and Aim: Myeloma plasma cells are dependent on stromal support which is mediated through cell adhesion. Heparanase activity has been shown to be associated with aggressive behavior or Bortezomib resistance and can lead to increased levels of proteases as well as shedding of heparan sulfate proteoglycan syndecan-1(CD138) from myeloma cells. We have recently published in vivo anti-myeloma effects of low molecular weight heparin (Beksac et al Acta Haematol 2015). Protease activated Receptor (PAR1) is a thrombin receptor. PAR1 gene and antigen expression on myeloma patient samples and cell lines (HMCL) has been recently reported by University of Arkansas (UAMS) group (Tian et al ASH 2011). They were able to find HMCLs H929, U266, JJN3 to express PAR1. Also expression was found to be highest among patients with 5q amplification where the PAR1 gene is located.
Patients and Methods: We analyzed PAR1 expression (WEDE15 PE, Beckman Coulter) by flow cytometry, on CD38+CD138+/-CD27+/- cells obtained from fresh patient bone marrow samples obtained either at diagnosis (n: 84)(NDMM) or relapse (n: 54)(RRMM) and were compared with marrow samples taken from patients without MM (n: 43). Our group in Ankara University had previously synthesized and published novel benzamide and phenyl acetamide derivatives. We performed an in silico docking analysis on these molecules, and eleven (TD10,TD12,TD12A,TD12B,TD13,TD14,TD14B,XT2,XT2B,XT5,XT11) were found to bind to PAR1. These molecules were screened using 72 hour MTT assay on primary and refractory cell lines (U266BR ,U266, JJN3BR, JJN3, H929R, OPM2, OPM2R, KMS28PE).
Results: PAR1 expression was highest on platelets followed by myeloma plasma cells (0-81.9%) and did not correlate with ISS. PAR1 expression (Threshold: >2.5 % or >5%) could be detected in NDMM (35 % or 14%) and RRMM (31% or 19%) of patients (Table1). PAR1+CD38+138+ cells were more frequent among patients with lower percentage of plasma cells in RRMM group (2,98 ± 4,5 vs 1,93 ± 3,96, P=0.028) but not NDMM. PAR1 was similarly highly expressed on HCML. Two of the novel PAR1 binding molecules (XT5 and XT2B) were found to have the lowest IC50. The IC50 were similar for all HMCLs, primary and refractory, with XT5. With XT2B the IC50 was less (U266) or higher (JJN3) or similar (OPM2) for refractory compared to the primary HMCL. PAR1 expression and anti-myeloma IC50 values of cell lines are summarized in Table 2.
Conclusion: PAR1 expression is detectable at ver |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V126.23.4440.4440 |