Loading…
Influence of isolation gap size on the collapse performance of seismically base-isolated buildings
The pounding of retaining walls forms a potential risk of degrading the performance of seismically base-isolated buildings subjected to strong, especially near-fault, earthquake ground motions. Incremental dynamic analysis is employed to generate the so-called gap graph, in which two characteristic...
Saved in:
Published in: | Earthquake spectra 2013-11, Vol.29 (4), p.1477-1494 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The pounding of retaining walls forms a potential risk of degrading the performance of seismically base-isolated buildings subjected to strong, especially near-fault, earthquake ground motions. Incremental dynamic analysis is employed to generate the so-called gap graph, in which two characteristic gap sizes of a base-isolated building are related with the isolation period of the building and the strength of the superstructure. The gap graph can be used to evaluate the required gap size for a base-isolated building to have certain collapse performance. By means of gap graphs, the interdependent relations of gap size with other important factors that influence the seismic performance of the base-isolated building are examined. In particular, the results show that near-fault pulse-like ground motions are likely to impose much higher demand for the isolation gap than far-field ones. |
---|---|
ISSN: | 8755-2930 1944-8201 |
DOI: | 10.1193/031912EQS097M |