Loading…

Order-Based Dependent Dirichlet Processes

In this article we propose a new framework for Bayesian nonparametric modeling with continuous covariates. In particular, we allow the nonparametric distribution to depend on covariates through ordering the random variables building the weights in the stick-breaking representation. We focus mostly o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 2006-03, Vol.101 (473), p.179-194
Main Authors: Griffin, J. E, Steel, M. F. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article we propose a new framework for Bayesian nonparametric modeling with continuous covariates. In particular, we allow the nonparametric distribution to depend on covariates through ordering the random variables building the weights in the stick-breaking representation. We focus mostly on the class of random distributions that induces a Dirichlet process at each covariate value. We derive the correlation between distributions at different covariate values and use a point process to implement a practically useful type of ordering. Two main constructions with analytically known correlation structures are proposed. Practical and efficient computational methods are introduced. We apply our framework, through mixtures of these processes, to regression modeling, the modeling of stochastic volatility in time series data, and spatial geostatistical modeling.
ISSN:0162-1459
1537-274X
DOI:10.1198/016214505000000727