Loading…

Quasi-exact treatment of non-relativistic generalized hyperbolic potentials

The solution of the Schrödinger equation for the two quasi-exactly solvable potentials is presented using the Lie algebra approach. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential...

Full description

Saved in:
Bibliographic Details
Published in:Europhysics letters 2023-02, Vol.141 (4), p.40003
Main Authors: Rath, Biswanath, Sedaghatnia, Parisa, Hassanabadi, Hassan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The solution of the Schrödinger equation for the two quasi-exactly solvable potentials is presented using the Lie algebra approach. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the two models in terms of the roots of a set of algebraic quasi-exact solvable methods.
ISSN:0295-5075
1286-4854
DOI:10.1209/0295-5075/acb798