Loading…
Quasi-exact treatment of non-relativistic generalized hyperbolic potentials
The solution of the Schrödinger equation for the two quasi-exactly solvable potentials is presented using the Lie algebra approach. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential...
Saved in:
Published in: | Europhysics letters 2023-02, Vol.141 (4), p.40003 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c191t-d148f746223fd9ff120e49bfa95755ad4ac6112c326fd5384313d82d5f6790853 |
container_end_page | |
container_issue | 4 |
container_start_page | 40003 |
container_title | Europhysics letters |
container_volume | 141 |
creator | Rath, Biswanath Sedaghatnia, Parisa Hassanabadi, Hassan |
description | The solution of the Schrödinger equation for the two quasi-exactly solvable potentials is presented using the Lie algebra approach. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the two models in terms of the roots of a set of algebraic quasi-exact solvable methods. |
doi_str_mv | 10.1209/0295-5075/acb798 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1209_0295_5075_acb798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110113369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-d148f746223fd9ff120e49bfa95755ad4ac6112c326fd5384313d82d5f6790853</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKt3jwtejc0km93kKEWrWBBBzyHdTTRlu1mTVKy_3pQVPXkamHnvzcyH0DmQK6BEzgiVHHNS85luVrUUB2gCVFS4FLw8RJPf8TE6iXFNCICAaoIenrY6Omw-dZOKFIxOG9Onwtui9z0OptPJfbiYXFO8mt4E3bkv0xZvu8GEle9ye_ApO5zu4ik6srmYs586RS-3N8_zO7x8XNzPr5e4AQkJt1AKW5cVpcy20tp8vinlymrJa851W-qmAqANo5VtORMlA9YK2nJb1ZIIzqboYswdgn_fmpjU2m9Dn1cqBpA_Y6ySWUVGVRN8jMFYNQS30WGngKg9MrVnovZM1IgsWy5Hi_PDX-a_8m8_iWzq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110113369</pqid></control><display><type>article</type><title>Quasi-exact treatment of non-relativistic generalized hyperbolic potentials</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Rath, Biswanath ; Sedaghatnia, Parisa ; Hassanabadi, Hassan</creator><creatorcontrib>Rath, Biswanath ; Sedaghatnia, Parisa ; Hassanabadi, Hassan</creatorcontrib><description>The solution of the Schrödinger equation for the two quasi-exactly solvable potentials is presented using the Lie algebra approach. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the two models in terms of the roots of a set of algebraic quasi-exact solvable methods.</description><identifier>ISSN: 0295-5075</identifier><identifier>EISSN: 1286-4854</identifier><identifier>DOI: 10.1209/0295-5075/acb798</identifier><identifier>CODEN: EULEEJ</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences, IOP Publishing and Società Italiana di Fisica</publisher><subject>Differential equations ; Eigenvalues ; Eigenvectors ; Lie groups ; Schrodinger equation</subject><ispartof>Europhysics letters, 2023-02, Vol.141 (4), p.40003</ispartof><rights>Copyright © 2023 EPLA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-d148f746223fd9ff120e49bfa95755ad4ac6112c326fd5384313d82d5f6790853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rath, Biswanath</creatorcontrib><creatorcontrib>Sedaghatnia, Parisa</creatorcontrib><creatorcontrib>Hassanabadi, Hassan</creatorcontrib><title>Quasi-exact treatment of non-relativistic generalized hyperbolic potentials</title><title>Europhysics letters</title><addtitle>EPL</addtitle><addtitle>EPL</addtitle><description>The solution of the Schrödinger equation for the two quasi-exactly solvable potentials is presented using the Lie algebra approach. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the two models in terms of the roots of a set of algebraic quasi-exact solvable methods.</description><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Lie groups</subject><subject>Schrodinger equation</subject><issn>0295-5075</issn><issn>1286-4854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKt3jwtejc0km93kKEWrWBBBzyHdTTRlu1mTVKy_3pQVPXkamHnvzcyH0DmQK6BEzgiVHHNS85luVrUUB2gCVFS4FLw8RJPf8TE6iXFNCICAaoIenrY6Omw-dZOKFIxOG9Onwtui9z0OptPJfbiYXFO8mt4E3bkv0xZvu8GEle9ye_ApO5zu4ik6srmYs586RS-3N8_zO7x8XNzPr5e4AQkJt1AKW5cVpcy20tp8vinlymrJa851W-qmAqANo5VtORMlA9YK2nJb1ZIIzqboYswdgn_fmpjU2m9Dn1cqBpA_Y6ySWUVGVRN8jMFYNQS30WGngKg9MrVnovZM1IgsWy5Hi_PDX-a_8m8_iWzq</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Rath, Biswanath</creator><creator>Sedaghatnia, Parisa</creator><creator>Hassanabadi, Hassan</creator><general>EDP Sciences, IOP Publishing and Società Italiana di Fisica</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230201</creationdate><title>Quasi-exact treatment of non-relativistic generalized hyperbolic potentials</title><author>Rath, Biswanath ; Sedaghatnia, Parisa ; Hassanabadi, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-d148f746223fd9ff120e49bfa95755ad4ac6112c326fd5384313d82d5f6790853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Lie groups</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rath, Biswanath</creatorcontrib><creatorcontrib>Sedaghatnia, Parisa</creatorcontrib><creatorcontrib>Hassanabadi, Hassan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Europhysics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rath, Biswanath</au><au>Sedaghatnia, Parisa</au><au>Hassanabadi, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-exact treatment of non-relativistic generalized hyperbolic potentials</atitle><jtitle>Europhysics letters</jtitle><stitle>EPL</stitle><addtitle>EPL</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>141</volume><issue>4</issue><spage>40003</spage><pages>40003-</pages><issn>0295-5075</issn><eissn>1286-4854</eissn><coden>EULEEJ</coden><abstract>The solution of the Schrödinger equation for the two quasi-exactly solvable potentials is presented using the Lie algebra approach. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the two models in terms of the roots of a set of algebraic quasi-exact solvable methods.</abstract><cop>Les Ulis</cop><pub>EDP Sciences, IOP Publishing and Società Italiana di Fisica</pub><doi>10.1209/0295-5075/acb798</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0295-5075 |
ispartof | Europhysics letters, 2023-02, Vol.141 (4), p.40003 |
issn | 0295-5075 1286-4854 |
language | eng |
recordid | cdi_crossref_primary_10_1209_0295_5075_acb798 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Differential equations Eigenvalues Eigenvectors Lie groups Schrodinger equation |
title | Quasi-exact treatment of non-relativistic generalized hyperbolic potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-exact%20treatment%20of%20non-relativistic%20generalized%20hyperbolic%20potentials&rft.jtitle=Europhysics%20letters&rft.au=Rath,%20Biswanath&rft.date=2023-02-01&rft.volume=141&rft.issue=4&rft.spage=40003&rft.pages=40003-&rft.issn=0295-5075&rft.eissn=1286-4854&rft.coden=EULEEJ&rft_id=info:doi/10.1209/0295-5075/acb798&rft_dat=%3Cproquest_cross%3E3110113369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-d148f746223fd9ff120e49bfa95755ad4ac6112c326fd5384313d82d5f6790853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110113369&rft_id=info:pmid/&rfr_iscdi=true |