Loading…

DUALITY AND FIXATION IN Ξ-WRIGHT–FISHER PROCESSES WITH FREQUENCY-DEPENDENT SELECTION

A two-types, discrete-time population model with finite, constant size is constructed, allowing for a general form of frequency-dependent selection and skewed offspring distribution. Selection is defined based on the idea that individuals first choose a (random) number of potential parents from the...

Full description

Saved in:
Bibliographic Details
Published in:The Annals of applied probability 2018-02, Vol.28 (1), p.250-284
Main Authors: Casanova, Adrián González, Spanò, Dario
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A two-types, discrete-time population model with finite, constant size is constructed, allowing for a general form of frequency-dependent selection and skewed offspring distribution. Selection is defined based on the idea that individuals first choose a (random) number of potential parents from the previous generation and then, from the selected pool, they inherit the type of the fittest parent. The probability distribution function of the number of potential parents per individual thus parametrises entirely the selection mechanism. Using sampling- and moment-duality, weak convergence is then proved both for the allele frequency process of the selectively weak type and for the population’s ancestral process. The scaling limits are, respectively, a two-types Ξ-Fleming–Viot jump-diffusion process with frequency-dependent selection, and a branching-coalescing process with general branching and simultaneous multiple collisions. Duality also leads to a characterisation of the probability of extinction of the selectively weak allele, in terms of the ancestral process’ ergodic properties.
ISSN:1050-5164
2168-8737
DOI:10.1214/17-AAP1305