Loading…
Thermal Hydraulic Analysis of FIRE Divertor
The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the U.S. magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6...
Saved in:
Published in: | Fusion technology 2001-03, Vol.39 (2P2), p.408-411 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Fusion Ignition Research Experiment (FIRE) is being designed as a next step in the U.S. magnetic fusion program. The FIRE tokamak has a major radius of 2 m, a minor radius of 0.525 m, and liquid nitrogen cooled copper coils. The aim is to produce a pulse length of 20 s with a plasma current of 6.6 MA and with alpha dominated heating.
The outer divertor and baffle of FIRE are water cooled. The worst thermal condition for the outer divertor and baffle is the baseline D-T operating mode (10 T, 6.6 MA, 20 s) with a plasma exhaust power of 67 MW and a peak heat flux of 20 MW/m
2
. A swirl tape (ST) heat transfer enhancement method is used in the outer divertor cooling channels to increase the heat transfer coefficient and the critical heat flux (CHF). The plasma-facing surface consists of tungsten brush.
The finite element (FE) analysis shows that for an inlet water temperature of 30°C, inlet pressure of 1.5 MPa and a flow velocity of 10 m/s, the incident critical heat flux is greater than 30 MW/m
2
. The peak copper temperature is 490°C, peak tungsten temperature is 1560°C, and the pressure drop is less than 0.5 MPa. All these results fulfill the design requirements. |
---|---|
ISSN: | 0748-1896 |
DOI: | 10.13182/FST01-A11963269 |