Loading…
Integrals of ψ-classes over double ramification cycles
A double ramification cycle, or DR-cycle, is a codimension $g$ cycle in the moduli space $\overline{\mathcal M}_{g,n}$ of stable curves. Roughly speaking, given a list of integers $(a_1,\ldots,a_n)$, the DR-cycle ${\rm DR}_g(a_1,\ldots,a_n) \subset\overline{\mathcal M}_{g,n}$ is the locus of curves...
Saved in:
Published in: | American journal of mathematics 2015-06, Vol.137 (3), p.699-737 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A double ramification cycle, or DR-cycle, is a codimension $g$ cycle in
the moduli space $\overline{\mathcal M}_{g,n}$ of stable curves. Roughly
speaking, given a list of integers $(a_1,\ldots,a_n)$, the DR-cycle ${\rm
DR}_g(a_1,\ldots,a_n) \subset\overline{\mathcal M}_{g,n}$ is the locus of
curves $(C,x_1,\ldots,x_n)$ such that the divisor $\sum a_ix_i$ is
principal. We compute the intersection numbers of DR-cycles with all
monomials in $\psi$-classes. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2015.0022 |