Loading…

Integrals of ψ-classes over double ramification cycles

A double ramification cycle, or DR-cycle, is a codimension $g$ cycle in the moduli space $\overline{\mathcal M}_{g,n}$ of stable curves. Roughly speaking, given a list of integers $(a_1,\ldots,a_n)$, the DR-cycle ${\rm DR}_g(a_1,\ldots,a_n) \subset\overline{\mathcal M}_{g,n}$ is the locus of curves...

Full description

Saved in:
Bibliographic Details
Published in:American journal of mathematics 2015-06, Vol.137 (3), p.699-737
Main Authors: Buryak, A, Shadrin, S, Spitz, L, Zvonkine, D
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A double ramification cycle, or DR-cycle, is a codimension $g$ cycle in the moduli space $\overline{\mathcal M}_{g,n}$ of stable curves. Roughly speaking, given a list of integers $(a_1,\ldots,a_n)$, the DR-cycle ${\rm DR}_g(a_1,\ldots,a_n) \subset\overline{\mathcal M}_{g,n}$ is the locus of curves $(C,x_1,\ldots,x_n)$ such that the divisor $\sum a_ix_i$ is principal. We compute the intersection numbers of DR-cycles with all monomials in $\psi$-classes.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2015.0022