Loading…

Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods

Surface layer optical turbulence values in the form of the refractive index structure function 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key d...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2024-06, Vol.63 (16), p.E78
Main Authors: Fiorino, Steven, Raut, Yogendra, Schmidt, Jaclyn, Slabaugh, Laura, Fourman, Blaine, McCrae, Jack, Wilson, Benjamin, Bose-Pillai, Santasri
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c215t-861f0ce83e96b0b7e2c33f48d42c7dcd00f6ee16cabd3ec3388e1ebc1255dae73
cites cdi_FETCH-LOGICAL-c215t-861f0ce83e96b0b7e2c33f48d42c7dcd00f6ee16cabd3ec3388e1ebc1255dae73
container_end_page
container_issue 16
container_start_page E78
container_title Applied optics (2004)
container_volume 63
creator Fiorino, Steven
Raut, Yogendra
Schmidt, Jaclyn
Slabaugh, Laura
Fourman, Blaine
McCrae, Jack
Wilson, Benjamin
Bose-Pillai, Santasri
description Surface layer optical turbulence values in the form of the refractive index structure function 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key derived component needed in the surface layer turbulence calculations is the sensible heat value. Typically, the sensible heat is calculated using the bulk aerodynamic method that assumes a certain surface roughness and a friction velocity that approximates the turbulence drag on temperature and moisture mixing from the change in the average surface layer vertical wind velocity. These assumptions/approximations generally only apply in free convection conditions. To obtain the sensible heat, a more robust method, which applies when free convection conditions are not occurring, is via an energy balance method such as the Bowen ratio method. The use of the Bowen ratio--the ratio of sensible heat flux to latent heat flux--allows a more direct assessment of the optical turbulence-driving surface layer sensible heat flux than do more traditional assessments of surface layer sensible heat flux. This study compares surface layer 2 values using sensible heat values from the bulk aerodynamic and energy balance methods to quantifications from sonic anemometers posted at different heights on a sensor tower. The research shows that the sensible heat obtained via the Bowen ratio method provides a simpler, more reliable, and more accurate way to calculate surface layer 2 values than what is required to make such calculations from bulk aerodynamic method-obtained sensible heat.
doi_str_mv 10.1364/AO.521086
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1364_AO_521086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38856594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-861f0ce83e96b0b7e2c33f48d42c7dcd00f6ee16cabd3ec3388e1ebc1255dae73</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMotlYXvoBk62I0mUwymWUp3qBQBAV3Qy4n7chcSi6FeXunVF2dwzkfP_wfQreUPFAmisfl5oHnlEhxhuY55TxjVPBzNJ_WKqO5_JqhqxC-CWG8qMpLNGNScsGrYo7ie1J9bFxjVGyGHg8Oh-SdMoBbNYLHMXmdWuinQwpNv8UB-tDoFvAOVMQH1SYI2Pmhw9CD345Yq1Yd8QP4kAJW4Ac79qprDO4g7gYbrtGFU22Am9-5QJ_PTx-r12y9eXlbLdeZmVrETArqiAHJoBKa6BJyw5grpC1yU1pjCXECgAqjtGUw_aQECtrQnHOroGQLdH_KNX4IwYOr977plB9rSuqjuXq5qU_mJvbuxO6T7sD-k3-q2A-L42y9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods</title><source>OSA_美国光学学会数据库1</source><creator>Fiorino, Steven ; Raut, Yogendra ; Schmidt, Jaclyn ; Slabaugh, Laura ; Fourman, Blaine ; McCrae, Jack ; Wilson, Benjamin ; Bose-Pillai, Santasri</creator><creatorcontrib>Fiorino, Steven ; Raut, Yogendra ; Schmidt, Jaclyn ; Slabaugh, Laura ; Fourman, Blaine ; McCrae, Jack ; Wilson, Benjamin ; Bose-Pillai, Santasri</creatorcontrib><description>Surface layer optical turbulence values in the form of the refractive index structure function 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key derived component needed in the surface layer turbulence calculations is the sensible heat value. Typically, the sensible heat is calculated using the bulk aerodynamic method that assumes a certain surface roughness and a friction velocity that approximates the turbulence drag on temperature and moisture mixing from the change in the average surface layer vertical wind velocity. These assumptions/approximations generally only apply in free convection conditions. To obtain the sensible heat, a more robust method, which applies when free convection conditions are not occurring, is via an energy balance method such as the Bowen ratio method. The use of the Bowen ratio--the ratio of sensible heat flux to latent heat flux--allows a more direct assessment of the optical turbulence-driving surface layer sensible heat flux than do more traditional assessments of surface layer sensible heat flux. This study compares surface layer 2 values using sensible heat values from the bulk aerodynamic and energy balance methods to quantifications from sonic anemometers posted at different heights on a sensor tower. The research shows that the sensible heat obtained via the Bowen ratio method provides a simpler, more reliable, and more accurate way to calculate surface layer 2 values than what is required to make such calculations from bulk aerodynamic method-obtained sensible heat.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.521086</identifier><identifier>PMID: 38856594</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied optics (2004), 2024-06, Vol.63 (16), p.E78</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c215t-861f0ce83e96b0b7e2c33f48d42c7dcd00f6ee16cabd3ec3388e1ebc1255dae73</citedby><cites>FETCH-LOGICAL-c215t-861f0ce83e96b0b7e2c33f48d42c7dcd00f6ee16cabd3ec3388e1ebc1255dae73</cites><orcidid>0000-0002-0855-6674 ; 0000-0002-6780-0681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38856594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiorino, Steven</creatorcontrib><creatorcontrib>Raut, Yogendra</creatorcontrib><creatorcontrib>Schmidt, Jaclyn</creatorcontrib><creatorcontrib>Slabaugh, Laura</creatorcontrib><creatorcontrib>Fourman, Blaine</creatorcontrib><creatorcontrib>McCrae, Jack</creatorcontrib><creatorcontrib>Wilson, Benjamin</creatorcontrib><creatorcontrib>Bose-Pillai, Santasri</creatorcontrib><title>Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Surface layer optical turbulence values in the form of the refractive index structure function 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key derived component needed in the surface layer turbulence calculations is the sensible heat value. Typically, the sensible heat is calculated using the bulk aerodynamic method that assumes a certain surface roughness and a friction velocity that approximates the turbulence drag on temperature and moisture mixing from the change in the average surface layer vertical wind velocity. These assumptions/approximations generally only apply in free convection conditions. To obtain the sensible heat, a more robust method, which applies when free convection conditions are not occurring, is via an energy balance method such as the Bowen ratio method. The use of the Bowen ratio--the ratio of sensible heat flux to latent heat flux--allows a more direct assessment of the optical turbulence-driving surface layer sensible heat flux than do more traditional assessments of surface layer sensible heat flux. This study compares surface layer 2 values using sensible heat values from the bulk aerodynamic and energy balance methods to quantifications from sonic anemometers posted at different heights on a sensor tower. The research shows that the sensible heat obtained via the Bowen ratio method provides a simpler, more reliable, and more accurate way to calculate surface layer 2 values than what is required to make such calculations from bulk aerodynamic method-obtained sensible heat.</description><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMotlYXvoBk62I0mUwymWUp3qBQBAV3Qy4n7chcSi6FeXunVF2dwzkfP_wfQreUPFAmisfl5oHnlEhxhuY55TxjVPBzNJ_WKqO5_JqhqxC-CWG8qMpLNGNScsGrYo7ie1J9bFxjVGyGHg8Oh-SdMoBbNYLHMXmdWuinQwpNv8UB-tDoFvAOVMQH1SYI2Pmhw9CD345Yq1Yd8QP4kAJW4Ac79qprDO4g7gYbrtGFU22Am9-5QJ_PTx-r12y9eXlbLdeZmVrETArqiAHJoBKa6BJyw5grpC1yU1pjCXECgAqjtGUw_aQECtrQnHOroGQLdH_KNX4IwYOr977plB9rSuqjuXq5qU_mJvbuxO6T7sD-k3-q2A-L42y9</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Fiorino, Steven</creator><creator>Raut, Yogendra</creator><creator>Schmidt, Jaclyn</creator><creator>Slabaugh, Laura</creator><creator>Fourman, Blaine</creator><creator>McCrae, Jack</creator><creator>Wilson, Benjamin</creator><creator>Bose-Pillai, Santasri</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0855-6674</orcidid><orcidid>https://orcid.org/0000-0002-6780-0681</orcidid></search><sort><creationdate>20240601</creationdate><title>Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods</title><author>Fiorino, Steven ; Raut, Yogendra ; Schmidt, Jaclyn ; Slabaugh, Laura ; Fourman, Blaine ; McCrae, Jack ; Wilson, Benjamin ; Bose-Pillai, Santasri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-861f0ce83e96b0b7e2c33f48d42c7dcd00f6ee16cabd3ec3388e1ebc1255dae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiorino, Steven</creatorcontrib><creatorcontrib>Raut, Yogendra</creatorcontrib><creatorcontrib>Schmidt, Jaclyn</creatorcontrib><creatorcontrib>Slabaugh, Laura</creatorcontrib><creatorcontrib>Fourman, Blaine</creatorcontrib><creatorcontrib>McCrae, Jack</creatorcontrib><creatorcontrib>Wilson, Benjamin</creatorcontrib><creatorcontrib>Bose-Pillai, Santasri</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiorino, Steven</au><au>Raut, Yogendra</au><au>Schmidt, Jaclyn</au><au>Slabaugh, Laura</au><au>Fourman, Blaine</au><au>McCrae, Jack</au><au>Wilson, Benjamin</au><au>Bose-Pillai, Santasri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>63</volume><issue>16</issue><spage>E78</spage><pages>E78-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Surface layer optical turbulence values in the form of the refractive index structure function 2 are often calculated from surface layer temperature, moisture, and wind characteristics and compared to measurements from sonic anemometers, differential temperature sensors, and imaging systems. A key derived component needed in the surface layer turbulence calculations is the sensible heat value. Typically, the sensible heat is calculated using the bulk aerodynamic method that assumes a certain surface roughness and a friction velocity that approximates the turbulence drag on temperature and moisture mixing from the change in the average surface layer vertical wind velocity. These assumptions/approximations generally only apply in free convection conditions. To obtain the sensible heat, a more robust method, which applies when free convection conditions are not occurring, is via an energy balance method such as the Bowen ratio method. The use of the Bowen ratio--the ratio of sensible heat flux to latent heat flux--allows a more direct assessment of the optical turbulence-driving surface layer sensible heat flux than do more traditional assessments of surface layer sensible heat flux. This study compares surface layer 2 values using sensible heat values from the bulk aerodynamic and energy balance methods to quantifications from sonic anemometers posted at different heights on a sensor tower. The research shows that the sensible heat obtained via the Bowen ratio method provides a simpler, more reliable, and more accurate way to calculate surface layer 2 values than what is required to make such calculations from bulk aerodynamic method-obtained sensible heat.</abstract><cop>United States</cop><pmid>38856594</pmid><doi>10.1364/AO.521086</doi><orcidid>https://orcid.org/0000-0002-0855-6674</orcidid><orcidid>https://orcid.org/0000-0002-6780-0681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2024-06, Vol.63 (16), p.E78
issn 1559-128X
2155-3165
language eng
recordid cdi_crossref_primary_10_1364_AO_521086
source OSA_美国光学学会数据库1
title Quantification of surface layer turbulence using sensible heat values from energy balance versus aerodynamic methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20surface%20layer%20turbulence%20using%20sensible%20heat%20values%20from%20energy%20balance%20versus%20aerodynamic%20methods&rft.jtitle=Applied%20optics%20(2004)&rft.au=Fiorino,%20Steven&rft.date=2024-06-01&rft.volume=63&rft.issue=16&rft.spage=E78&rft.pages=E78-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.521086&rft_dat=%3Cpubmed_cross%3E38856594%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c215t-861f0ce83e96b0b7e2c33f48d42c7dcd00f6ee16cabd3ec3388e1ebc1255dae73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38856594&rfr_iscdi=true