Loading…
GraphMat: high performance graph analytics made productive
Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. Gr...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2015-07, Vol.8 (11), p.1214-1225 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. GraphMat functions by taking vertex programs and mapping them to high performance sparse matrix operations in the backend. We thus get the productivity benefits of a vertex programming framework without sacrificing performance. GraphMat is a single-node multicore graph framework written in C++ which has enabled us to write a diverse set of graph algorithms with the same effort compared to other vertex programming frameworks. GraphMat performs 1.1-7X faster than high performance frameworks such as GraphLab, CombBLAS and Galois. GraphMat also matches the performance of MapGraph, a GPU-based graph framework, despite running on a CPU platform with significantly lower compute and bandwidth resources. It achieves better multicore scalability (13-15X on 24 cores) than other frameworks and is 1.2X off native, hand-optimized code on a variety of graph algorithms. Since GraphMat performance depends mainly on a few scalable and well-understood sparse matrix operations, GraphMat can naturally benefit from the trend of increasing parallelism in future hardware. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/2809974.2809983 |