Loading…

GraphMat: high performance graph analytics made productive

Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. Gr...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the VLDB Endowment 2015-07, Vol.8 (11), p.1214-1225
Main Authors: Sundaram, Narayanan, Satish, Nadathur, Patwary, Md Mostofa Ali, Dulloor, Subramanya R., Anderson, Michael J., Vadlamudi, Satya Gautam, Das, Dipankar, Dubey, Pradeep
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-de2660e545bb4d248b6c3d0715e562afde66887a15e499448a51e1ed6ec72c73
container_end_page 1225
container_issue 11
container_start_page 1214
container_title Proceedings of the VLDB Endowment
container_volume 8
creator Sundaram, Narayanan
Satish, Nadathur
Patwary, Md Mostofa Ali
Dulloor, Subramanya R.
Anderson, Michael J.
Vadlamudi, Satya Gautam
Das, Dipankar
Dubey, Pradeep
description Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. GraphMat functions by taking vertex programs and mapping them to high performance sparse matrix operations in the backend. We thus get the productivity benefits of a vertex programming framework without sacrificing performance. GraphMat is a single-node multicore graph framework written in C++ which has enabled us to write a diverse set of graph algorithms with the same effort compared to other vertex programming frameworks. GraphMat performs 1.1-7X faster than high performance frameworks such as GraphLab, CombBLAS and Galois. GraphMat also matches the performance of MapGraph, a GPU-based graph framework, despite running on a CPU platform with significantly lower compute and bandwidth resources. It achieves better multicore scalability (13-15X on 24 cores) than other frameworks and is 1.2X off native, hand-optimized code on a variety of graph algorithms. Since GraphMat performance depends mainly on a few scalable and well-understood sparse matrix operations, GraphMat can naturally benefit from the trend of increasing parallelism in future hardware.
doi_str_mv 10.14778/2809974.2809983
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_14778_2809974_2809983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_14778_2809974_2809983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-de2660e545bb4d248b6c3d0715e562afde66887a15e499448a51e1ed6ec72c73</originalsourceid><addsrcrecordid>eNpNj0FrAjEQRoO0oNXe_RNrZ7LJZHIsUm1B8eI9ZJNZWlGUxEv_fUX30NP73uWDp9QcYYHGOX7TDN47s7iT25GaaLTQ3Mw9_dtj9VLrAYCYkCdqvC7x8r2N15l67uOxyuvAqdqvPvbLz2azW38t3zdNQk_XJosmArHGdp3J2nBHqc3g0IolHfssRMwu3tx4bwxHi4KSSZLTybVTBY_bVM61FunDpfycYvkNCOEeEoaQMIS0fzn8OKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GraphMat: high performance graph analytics made productive</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Sundaram, Narayanan ; Satish, Nadathur ; Patwary, Md Mostofa Ali ; Dulloor, Subramanya R. ; Anderson, Michael J. ; Vadlamudi, Satya Gautam ; Das, Dipankar ; Dubey, Pradeep</creator><creatorcontrib>Sundaram, Narayanan ; Satish, Nadathur ; Patwary, Md Mostofa Ali ; Dulloor, Subramanya R. ; Anderson, Michael J. ; Vadlamudi, Satya Gautam ; Das, Dipankar ; Dubey, Pradeep</creatorcontrib><description>Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. GraphMat functions by taking vertex programs and mapping them to high performance sparse matrix operations in the backend. We thus get the productivity benefits of a vertex programming framework without sacrificing performance. GraphMat is a single-node multicore graph framework written in C++ which has enabled us to write a diverse set of graph algorithms with the same effort compared to other vertex programming frameworks. GraphMat performs 1.1-7X faster than high performance frameworks such as GraphLab, CombBLAS and Galois. GraphMat also matches the performance of MapGraph, a GPU-based graph framework, despite running on a CPU platform with significantly lower compute and bandwidth resources. It achieves better multicore scalability (13-15X on 24 cores) than other frameworks and is 1.2X off native, hand-optimized code on a variety of graph algorithms. Since GraphMat performance depends mainly on a few scalable and well-understood sparse matrix operations, GraphMat can naturally benefit from the trend of increasing parallelism in future hardware.</description><identifier>ISSN: 2150-8097</identifier><identifier>EISSN: 2150-8097</identifier><identifier>DOI: 10.14778/2809974.2809983</identifier><language>eng</language><ispartof>Proceedings of the VLDB Endowment, 2015-07, Vol.8 (11), p.1214-1225</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-de2660e545bb4d248b6c3d0715e562afde66887a15e499448a51e1ed6ec72c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sundaram, Narayanan</creatorcontrib><creatorcontrib>Satish, Nadathur</creatorcontrib><creatorcontrib>Patwary, Md Mostofa Ali</creatorcontrib><creatorcontrib>Dulloor, Subramanya R.</creatorcontrib><creatorcontrib>Anderson, Michael J.</creatorcontrib><creatorcontrib>Vadlamudi, Satya Gautam</creatorcontrib><creatorcontrib>Das, Dipankar</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><title>GraphMat: high performance graph analytics made productive</title><title>Proceedings of the VLDB Endowment</title><description>Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. GraphMat functions by taking vertex programs and mapping them to high performance sparse matrix operations in the backend. We thus get the productivity benefits of a vertex programming framework without sacrificing performance. GraphMat is a single-node multicore graph framework written in C++ which has enabled us to write a diverse set of graph algorithms with the same effort compared to other vertex programming frameworks. GraphMat performs 1.1-7X faster than high performance frameworks such as GraphLab, CombBLAS and Galois. GraphMat also matches the performance of MapGraph, a GPU-based graph framework, despite running on a CPU platform with significantly lower compute and bandwidth resources. It achieves better multicore scalability (13-15X on 24 cores) than other frameworks and is 1.2X off native, hand-optimized code on a variety of graph algorithms. Since GraphMat performance depends mainly on a few scalable and well-understood sparse matrix operations, GraphMat can naturally benefit from the trend of increasing parallelism in future hardware.</description><issn>2150-8097</issn><issn>2150-8097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNj0FrAjEQRoO0oNXe_RNrZ7LJZHIsUm1B8eI9ZJNZWlGUxEv_fUX30NP73uWDp9QcYYHGOX7TDN47s7iT25GaaLTQ3Mw9_dtj9VLrAYCYkCdqvC7x8r2N15l67uOxyuvAqdqvPvbLz2azW38t3zdNQk_XJosmArHGdp3J2nBHqc3g0IolHfssRMwu3tx4bwxHi4KSSZLTybVTBY_bVM61FunDpfycYvkNCOEeEoaQMIS0fzn8OKg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Sundaram, Narayanan</creator><creator>Satish, Nadathur</creator><creator>Patwary, Md Mostofa Ali</creator><creator>Dulloor, Subramanya R.</creator><creator>Anderson, Michael J.</creator><creator>Vadlamudi, Satya Gautam</creator><creator>Das, Dipankar</creator><creator>Dubey, Pradeep</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>GraphMat</title><author>Sundaram, Narayanan ; Satish, Nadathur ; Patwary, Md Mostofa Ali ; Dulloor, Subramanya R. ; Anderson, Michael J. ; Vadlamudi, Satya Gautam ; Das, Dipankar ; Dubey, Pradeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-de2660e545bb4d248b6c3d0715e562afde66887a15e499448a51e1ed6ec72c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaram, Narayanan</creatorcontrib><creatorcontrib>Satish, Nadathur</creatorcontrib><creatorcontrib>Patwary, Md Mostofa Ali</creatorcontrib><creatorcontrib>Dulloor, Subramanya R.</creatorcontrib><creatorcontrib>Anderson, Michael J.</creatorcontrib><creatorcontrib>Vadlamudi, Satya Gautam</creatorcontrib><creatorcontrib>Das, Dipankar</creatorcontrib><creatorcontrib>Dubey, Pradeep</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the VLDB Endowment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaram, Narayanan</au><au>Satish, Nadathur</au><au>Patwary, Md Mostofa Ali</au><au>Dulloor, Subramanya R.</au><au>Anderson, Michael J.</au><au>Vadlamudi, Satya Gautam</au><au>Das, Dipankar</au><au>Dubey, Pradeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GraphMat: high performance graph analytics made productive</atitle><jtitle>Proceedings of the VLDB Endowment</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>8</volume><issue>11</issue><spage>1214</spage><epage>1225</epage><pages>1214-1225</pages><issn>2150-8097</issn><eissn>2150-8097</eissn><abstract>Given the growing importance of large-scale graph analytics, there is a need to improve the performance of graph analysis frameworks without compromising on productivity. GraphMat is our solution to bridge this gap between a user-friendly graph analytics framework and native, hand-optimized code. GraphMat functions by taking vertex programs and mapping them to high performance sparse matrix operations in the backend. We thus get the productivity benefits of a vertex programming framework without sacrificing performance. GraphMat is a single-node multicore graph framework written in C++ which has enabled us to write a diverse set of graph algorithms with the same effort compared to other vertex programming frameworks. GraphMat performs 1.1-7X faster than high performance frameworks such as GraphLab, CombBLAS and Galois. GraphMat also matches the performance of MapGraph, a GPU-based graph framework, despite running on a CPU platform with significantly lower compute and bandwidth resources. It achieves better multicore scalability (13-15X on 24 cores) than other frameworks and is 1.2X off native, hand-optimized code on a variety of graph algorithms. Since GraphMat performance depends mainly on a few scalable and well-understood sparse matrix operations, GraphMat can naturally benefit from the trend of increasing parallelism in future hardware.</abstract><doi>10.14778/2809974.2809983</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2150-8097
ispartof Proceedings of the VLDB Endowment, 2015-07, Vol.8 (11), p.1214-1225
issn 2150-8097
2150-8097
language eng
recordid cdi_crossref_primary_10_14778_2809974_2809983
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title GraphMat: high performance graph analytics made productive
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GraphMat:%20high%20performance%20graph%20analytics%20made%20productive&rft.jtitle=Proceedings%20of%20the%20VLDB%20Endowment&rft.au=Sundaram,%20Narayanan&rft.date=2015-07-01&rft.volume=8&rft.issue=11&rft.spage=1214&rft.epage=1225&rft.pages=1214-1225&rft.issn=2150-8097&rft.eissn=2150-8097&rft_id=info:doi/10.14778/2809974.2809983&rft_dat=%3Ccrossref%3E10_14778_2809974_2809983%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-de2660e545bb4d248b6c3d0715e562afde66887a15e499448a51e1ed6ec72c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true