Loading…
WiSeDB: a learning-based workload management advisor for cloud databases
Workload management for cloud databases deals with the tasks of resource provisioning, query placement, and query scheduling in a manner that meets the application's performance goals while minimizing the cost of using cloud resources. Existing solutions have approached these three challenges i...
Saved in:
Published in: | Proceedings of the VLDB Endowment 2016-06, Vol.9 (10), p.780-791 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Workload management for cloud databases deals with the tasks of resource provisioning, query placement, and query scheduling in a manner that meets the application's performance goals while minimizing the cost of using cloud resources. Existing solutions have approached these three challenges in isolation while aiming to optimize a single performance metric. In this paper, we introduce WiSeDB, a learning-based framework for generating
holistic
workload management solutions customized to application-defined performance goals and workload characteristics. Our approach relies on supervised learning to train cost-effective decision tree models for guiding query placement, scheduling, and resource provisioning decisions. Applications can use these models for both batch and online scheduling of incoming workloads. A unique feature of our system is that it can adapt its offline model to stricter/looser performance goals with minimal re-training. This allows us to present to the application alternative workload management strategies that address the typical performance vs. cost trade-off of cloud services. Experimental results show that our approach has very low training overhead while offering low cost strategies for a variety of performance metrics and workload characteristics. |
---|---|
ISSN: | 2150-8097 2150-8097 |
DOI: | 10.14778/2977797.2977804 |