Loading…

KLL ± approximate quantile sketches over dynamic datasets

Recently the long standing problem of optimal construction of quantile sketches was resolved by K arnin, L ang, and L iberty using the KLL sketch (FOCS 2016). The algorithm for KLL is restricted to online insert operations and no delete operations. For many real-world applications, it is necessary t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the VLDB Endowment 2021-03, Vol.14 (7), p.1215-1227
Main Authors: Zhao, Fuheng, Maiyya, Sujaya, Wiener, Ryan, Agrawal, Divyakant, Abbadi, Amr El
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently the long standing problem of optimal construction of quantile sketches was resolved by K arnin, L ang, and L iberty using the KLL sketch (FOCS 2016). The algorithm for KLL is restricted to online insert operations and no delete operations. For many real-world applications, it is necessary to support delete operations. When the data set is updated dynamically, i.e., when data elements are inserted and deleted, the quantile sketch should reflect the changes. In this paper, we propose KLL ± , the first quantile approximation algorithm to operate in the bounded deletion model to account for both inserts and deletes in a given data stream. KLL ± extends the functionality of KLL sketches to support arbitrary updates with small space overhead. The space bound for KLL ± is [EQUATION], where ∈ and δ are constants that determine precision and failure probability, and α bounds the number of deletions with respect to insert operations. The experimental evaluation of KLL ± highlights that with minimal space overhead, KLL ± achieves comparable accuracy in quantile approximation to KLL.
ISSN:2150-8097
2150-8097
DOI:10.14778/3450980.3450990