Loading…
Metal-organic chemical vapour deposition of lithium manganese oxide thin films via single solid source precursor
Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD) technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm /min for two-hour de...
Saved in:
Published in: | Materials science--Poland 2015-12, Vol.33 (4), p.725-731 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD) technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm
/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS), UV-Vis spectrophotometry, X-ray diffraction (XRD) spectroscopy, atomic force microscopy (AFM) and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (10
atoms/cm
) and effective stoichiometric relationship of Li
Mn
. The films exhibited relatively high transmission (50 % T) in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Ω·cm was obtained for the thin film. Compared with Mn
thin film, a significant lattice absorption edge shift was observed in the Li
Mn
film. |
---|---|
ISSN: | 2083-134X 2083-134X |
DOI: | 10.1515/msp-2015-0102 |