Loading…
Characterizing the Time- and Energy-Dependent Reactor n /γ Environment
In a reactor pulse, the early radiation has a neutron/gamma component resulting from the prompt fission neutron and gamma radiation and from the neutron-induced secondary gammas. However, after the primary reactor pulse, the radiation environment also includes a time-dependent delayed neutron and ga...
Saved in:
Published in: | Journal of ASTM International 2006-09, Vol.3 (8), p.1-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a reactor pulse, the early radiation has a neutron/gamma component resulting from the prompt fission neutron and gamma radiation and from the neutron-induced secondary gammas. However, after the primary reactor pulse, the radiation environment also includes a time-dependent delayed neutron and gamma component. At even later times, the material activation dominates the source term. When active tests are conducted in the reactor, the radiation environment at a particular time may not be well characterized by the time-integrated spectrum provided by the typical radiation transport calculations. This paper defines the steps that are required to adequately model the time- and energy-dependent radiation environment in the reactor environment. This paper also compares the time-dependent response from a range of active dosimeters in a reactor pulsed environment and shows how the n/γ mixed-field response for the dosimeters and the changing radiation field can influence the interpretation of the dosimetry. |
---|---|
ISSN: | 1546-962X 1546-962X |
DOI: | 10.1520/JAI100361 |