Loading…
Enhancement of Impact Properties by Using Multiwall Carbon Nanotubes as Secondary Reinforcement in Glass/Epoxy Laminates
This study is focused on the drop weight low-velocity impact (LVI) response of glass woven polymer composite laminates reinforced with multiwall carbon nanotubes (MWCNTs). Symmetrical quasi-isotropic laminates with zero bending-extension coupling were fabricated. Six hundred-grams per square meter p...
Saved in:
Published in: | Journal of testing and evaluation 2020-03, Vol.48 (2), p.1055-1070 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study is focused on the drop weight low-velocity impact (LVI) response of glass woven polymer composite laminates reinforced with multiwall carbon nanotubes (MWCNTs). Symmetrical quasi-isotropic laminates with zero bending-extension coupling were fabricated. Six hundred-grams per square meter plain glass woven fabric was used as a primary reinforcing agent while MWCNTs were used as the secondary reinforcement. The exceptional mechanical properties of MWCNTs in the context of impact damage tolerance in fiber-reinforced polymer composite laminates were examined and the limitation of scattered data was overcome by doing a range analysis. MWCNT-doped glass fiber reinforced polymer (GFRP) laminates were fabricated in seven proportions (neat, 0.25, 0.5, 0.75, 1, 1.5, and 2 weight percentage of resins) by using the hand layup technique, followed by the vacuum bagging method at 1 atm. By mixing MWCNTs as a secondary reinforcement, the maximum enhancement of 32.6 % in energy absorption, 10.26 % in peak load capacity (at 3.0 m/s impact velocity), and 32.44 % reduction in the visual damage area was attained (at 3.5 m/s indentation). Experiment results (for neat GFRP) were also validated by using three-dimensional finite element analysis software LS-DYNA. |
---|---|
ISSN: | 0090-3973 1945-7553 |
DOI: | 10.1520/JTE20170510 |