Loading…
Conseqüências da multicolinearidade sobre a análise de trilha em canola
A análise estatística do tipo multivariada vem crescendo consideravelmente, motivando a sua ampla utilização por parte dos pesquisadores criando, assim, grande demanda por conhecimentos específicos tanto a respeito da sua aplicação quanto das suas pressuposições ou limitações. Para que a avaliação d...
Saved in:
Published in: | Ciência rural 2005-04, Vol.35 (2), p.347-352 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A análise estatística do tipo multivariada vem crescendo consideravelmente, motivando a sua ampla utilização por parte dos pesquisadores criando, assim, grande demanda por conhecimentos específicos tanto a respeito da sua aplicação quanto das suas pressuposições ou limitações. Para que a avaliação do grau de associação entre diferentes caracteres de importância agronômica tenha uma estimativa confiável em termos biológico, é de fundamental importância identificar e quantificar o grau de multicolinearidade entre as variáveis estudadas. Além disso, os tipos de modelos estatísticos e matemáticos utilizados na determinação desta dependência linear entre as variáveis classificatórias ou independentes podem ou não ser adequados a estimativas dos parâmetros biológicos avaliados. O presente trabalho tem como objetivo apresentar uma avaliação crítica sobre o grau de multicolinearidade identificado e avaliado sobre a análise de trilha analisada sobre partes de um experimento de canola. Os resultados permitem inferir que a aplicação da análise de trilha sobre o grau de multicolinearidade severa produz resultados sem nenhuma importância biológica para o melhorista de plantas. No entanto, esta limitação pode ser facilmente identificada e corrigida através da análise de trilha com colinearidade empregando uma constante (k) na diagonal da matriz X‘X. O modelo de análise com multicolinearidade severa, entretanto, superestimou, valores de coeficientes de correlação simples, comparativamente com a multicolinearidade fraca. Mesmo assim, pode não ser necessariamente mais precisa, principalmente em virtude da avaliação de um número restrito de variáveis incluídas na análise ou de uma sobreposição destas variáveis explicativas.
The statistical multivariate analysis has a widespread use by researchers, creating a large demand for specific knowledge regarding its application concerning its assumptions and or limitations. In order to evaluate the degree of association among different characters of agronomic importance with an estimative reliable in biological terms, it is striking to quantify the multicolinearity among the studied variables. In addition, the types of statistical and mathematical models used in determining this linear dependence between classifying or independent variables may or may not be adequate for estimatives of biological parameters evaluated. The present work has as objective to present a critical evaluation on the degree of multicolinearity identified and |
---|---|
ISSN: | 0103-8478 0103-8478 |
DOI: | 10.1590/S0103-84782005000200015 |