Loading…
Incorporating Knowledge Graph Embeddings into Topic Modeling
Probabilistic topic models could be used to extract low-dimension topics from document collections. However, such models without any human knowledge often produce topics that are not interpretable. In recent years, a number of knowledge-based topic models have been proposed, but they could not proce...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Probabilistic topic models could be used to extract low-dimension topics from document collections. However, such models without any human knowledge often produce topics that are not interpretable. In recent years, a number of knowledge-based topic models have been proposed, but they could not process fact-oriented triple knowledge in knowledge graphs. Knowledge graph embeddings, on the other hand, automatically capture relations between entities in knowledge graphs. In this paper, we propose a novel knowledge-based topic model by incorporating knowledge graph embeddings into topic modeling. By combining latent Dirichlet allocation, a widely used topic model with knowledge encoded by entity vectors, we improve the semantic coherence significantly and capture a better representation of a document in the topic space. Our evaluation results will demonstrate the effectiveness of our method. |
---|---|
ISSN: | 2159-5399 2374-3468 |
DOI: | 10.1609/aaai.v31i1.10951 |