Loading…
Incorporating Knowledge Graph Embeddings into Topic Modeling
Probabilistic topic models could be used to extract low-dimension topics from document collections. However, such models without any human knowledge often produce topics that are not interpretable. In recent years, a number of knowledge-based topic models have been proposed, but they could not proce...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c173t-87a9bf2abb28f2c828a8ea8767dea588a05b179b3fc277ed576f1dbe2f13d3a23 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 31 |
creator | Yao, Liang Zhang, Yin Wei, Baogang Jin, Zhe Zhang, Rui Zhang, Yangyang Chen, Qinfei |
description | Probabilistic topic models could be used to extract low-dimension topics from document collections. However, such models without any human knowledge often produce topics that are not interpretable. In recent years, a number of knowledge-based topic models have been proposed, but they could not process fact-oriented triple knowledge in knowledge graphs. Knowledge graph embeddings, on the other hand, automatically capture relations between entities in knowledge graphs. In this paper, we propose a novel knowledge-based topic model by incorporating knowledge graph embeddings into topic modeling. By combining latent Dirichlet allocation, a widely used topic model with knowledge encoded by entity vectors, we improve the semantic coherence significantly and capture a better representation of a document in the topic space. Our evaluation results will demonstrate the effectiveness of our method. |
doi_str_mv | 10.1609/aaai.v31i1.10951 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1609_aaai_v31i1_10951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1609_aaai_v31i1_10951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-87a9bf2abb28f2c828a8ea8767dea588a05b179b3fc277ed576f1dbe2f13d3a23</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWGrvHvcPbM1LNpsEvEiptVjxUs_hZZPUle1mSRbFf--2dS4zzMAcPkLugS6hpvoBEdvlN4cWlkC1gCsyY1xWJa9qdT1lELoUXOtbssj5i06qNADIGXnc9k1MQ0w4tv2heO3jT-fdwRebhMNnsT5a79y05KLtx1js49A2xVt0vpvKO3ITsMt-8e9z8vG83q9eyt37Zrt62pUNSD6WSqK2gaG1TAXWKKZQeVSyls6jUAqpsCC15aFhUnonZB3AWc8CcMeR8Tmhl98mxZyTD2ZI7RHTrwFqTgDMCYA5AzBnAPwPhq9QSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incorporating Knowledge Graph Embeddings into Topic Modeling</title><source>Freely Accessible Science Journals - May need to register for free articles</source><creator>Yao, Liang ; Zhang, Yin ; Wei, Baogang ; Jin, Zhe ; Zhang, Rui ; Zhang, Yangyang ; Chen, Qinfei</creator><creatorcontrib>Yao, Liang ; Zhang, Yin ; Wei, Baogang ; Jin, Zhe ; Zhang, Rui ; Zhang, Yangyang ; Chen, Qinfei</creatorcontrib><description>Probabilistic topic models could be used to extract low-dimension topics from document collections. However, such models without any human knowledge often produce topics that are not interpretable. In recent years, a number of knowledge-based topic models have been proposed, but they could not process fact-oriented triple knowledge in knowledge graphs. Knowledge graph embeddings, on the other hand, automatically capture relations between entities in knowledge graphs. In this paper, we propose a novel knowledge-based topic model by incorporating knowledge graph embeddings into topic modeling. By combining latent Dirichlet allocation, a widely used topic model with knowledge encoded by entity vectors, we improve the semantic coherence significantly and capture a better representation of a document in the topic space. Our evaluation results will demonstrate the effectiveness of our method.</description><identifier>ISSN: 2159-5399</identifier><identifier>EISSN: 2374-3468</identifier><identifier>DOI: 10.1609/aaai.v31i1.10951</identifier><language>eng</language><ispartof>Proceedings of the ... AAAI Conference on Artificial Intelligence, 2017, Vol.31 (1)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-87a9bf2abb28f2c828a8ea8767dea588a05b179b3fc277ed576f1dbe2f13d3a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Wei, Baogang</creatorcontrib><creatorcontrib>Jin, Zhe</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Yangyang</creatorcontrib><creatorcontrib>Chen, Qinfei</creatorcontrib><title>Incorporating Knowledge Graph Embeddings into Topic Modeling</title><title>Proceedings of the ... AAAI Conference on Artificial Intelligence</title><description>Probabilistic topic models could be used to extract low-dimension topics from document collections. However, such models without any human knowledge often produce topics that are not interpretable. In recent years, a number of knowledge-based topic models have been proposed, but they could not process fact-oriented triple knowledge in knowledge graphs. Knowledge graph embeddings, on the other hand, automatically capture relations between entities in knowledge graphs. In this paper, we propose a novel knowledge-based topic model by incorporating knowledge graph embeddings into topic modeling. By combining latent Dirichlet allocation, a widely used topic model with knowledge encoded by entity vectors, we improve the semantic coherence significantly and capture a better representation of a document in the topic space. Our evaluation results will demonstrate the effectiveness of our method.</description><issn>2159-5399</issn><issn>2374-3468</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEFLAzEUhIMoWGrvHvcPbM1LNpsEvEiptVjxUs_hZZPUle1mSRbFf--2dS4zzMAcPkLugS6hpvoBEdvlN4cWlkC1gCsyY1xWJa9qdT1lELoUXOtbssj5i06qNADIGXnc9k1MQ0w4tv2heO3jT-fdwRebhMNnsT5a79y05KLtx1js49A2xVt0vpvKO3ITsMt-8e9z8vG83q9eyt37Zrt62pUNSD6WSqK2gaG1TAXWKKZQeVSyls6jUAqpsCC15aFhUnonZB3AWc8CcMeR8Tmhl98mxZyTD2ZI7RHTrwFqTgDMCYA5AzBnAPwPhq9QSQ</recordid><startdate>20170212</startdate><enddate>20170212</enddate><creator>Yao, Liang</creator><creator>Zhang, Yin</creator><creator>Wei, Baogang</creator><creator>Jin, Zhe</creator><creator>Zhang, Rui</creator><creator>Zhang, Yangyang</creator><creator>Chen, Qinfei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170212</creationdate><title>Incorporating Knowledge Graph Embeddings into Topic Modeling</title><author>Yao, Liang ; Zhang, Yin ; Wei, Baogang ; Jin, Zhe ; Zhang, Rui ; Zhang, Yangyang ; Chen, Qinfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-87a9bf2abb28f2c828a8ea8767dea588a05b179b3fc277ed576f1dbe2f13d3a23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Zhang, Yin</creatorcontrib><creatorcontrib>Wei, Baogang</creatorcontrib><creatorcontrib>Jin, Zhe</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Yangyang</creatorcontrib><creatorcontrib>Chen, Qinfei</creatorcontrib><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Liang</au><au>Zhang, Yin</au><au>Wei, Baogang</au><au>Jin, Zhe</au><au>Zhang, Rui</au><au>Zhang, Yangyang</au><au>Chen, Qinfei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incorporating Knowledge Graph Embeddings into Topic Modeling</atitle><btitle>Proceedings of the ... AAAI Conference on Artificial Intelligence</btitle><date>2017-02-12</date><risdate>2017</risdate><volume>31</volume><issue>1</issue><issn>2159-5399</issn><eissn>2374-3468</eissn><abstract>Probabilistic topic models could be used to extract low-dimension topics from document collections. However, such models without any human knowledge often produce topics that are not interpretable. In recent years, a number of knowledge-based topic models have been proposed, but they could not process fact-oriented triple knowledge in knowledge graphs. Knowledge graph embeddings, on the other hand, automatically capture relations between entities in knowledge graphs. In this paper, we propose a novel knowledge-based topic model by incorporating knowledge graph embeddings into topic modeling. By combining latent Dirichlet allocation, a widely used topic model with knowledge encoded by entity vectors, we improve the semantic coherence significantly and capture a better representation of a document in the topic space. Our evaluation results will demonstrate the effectiveness of our method.</abstract><doi>10.1609/aaai.v31i1.10951</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-5399 |
ispartof | Proceedings of the ... AAAI Conference on Artificial Intelligence, 2017, Vol.31 (1) |
issn | 2159-5399 2374-3468 |
language | eng |
recordid | cdi_crossref_primary_10_1609_aaai_v31i1_10951 |
source | Freely Accessible Science Journals - May need to register for free articles |
title | Incorporating Knowledge Graph Embeddings into Topic Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incorporating%20Knowledge%20Graph%20Embeddings%20into%20Topic%20Modeling&rft.btitle=Proceedings%20of%20the%20...%20AAAI%20Conference%20on%20Artificial%20Intelligence&rft.au=Yao,%20Liang&rft.date=2017-02-12&rft.volume=31&rft.issue=1&rft.issn=2159-5399&rft.eissn=2374-3468&rft_id=info:doi/10.1609/aaai.v31i1.10951&rft_dat=%3Ccrossref%3E10_1609_aaai_v31i1_10951%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c173t-87a9bf2abb28f2c828a8ea8767dea588a05b179b3fc277ed576f1dbe2f13d3a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |