Loading…

Adversarial Defence by Diversified Simultaneous Training of Deep Ensembles

Learning-based classifiers are susceptible to adversarial examples. Existing defence methods are mostly devised on individual classifiers. Recent studies showed that it is viable to increase adversarial robustness by promoting diversity over an ensemble of models. In this paper, we propose adversari...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang, Bo, Ke, Zhiwei, Wang, Yi, Wang, Wei, Shen, Linlin, Liu, Feng
Format: Conference Proceeding
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Learning-based classifiers are susceptible to adversarial examples. Existing defence methods are mostly devised on individual classifiers. Recent studies showed that it is viable to increase adversarial robustness by promoting diversity over an ensemble of models. In this paper, we propose adversarial defence by encouraging ensemble diversity on learning high-level feature representations and gradient dispersion in simultaneous training of deep ensemble networks. We perform extensive evaluations under white-box and black-box attacks including transferred examples and adaptive attacks. Our approach achieves a significant gain of up to 52% in adversarial robustness, compared with the baseline and the state-of-the-art method on image benchmarks with complex data scenes. The proposed approach complements the defence paradigm of adversarial training, and can further boost the performance. The source code is available at https://github.com/ALIS-Lab/AAAI2021-PDD.
ISSN:2159-5399
2374-3468
DOI:10.1609/aaai.v35i9.16955