Loading…
Rough Sets Based Rule Generation from Data with Categorical and Numerical Values
Rough set theory has been mainly applied to data with categorical values. In order to handle data with numerical values in this theory, a familiar concept of ‘wildcards’ was employed, and a new framework of rough sets based rule generation has been proposed. Two characters @ and # were introduced in...
Saved in:
Published in: | Journal of advanced computational intelligence and intelligent informatics 2008-09, Vol.12 (5), p.426-434 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rough set theory has been mainly applied to data with categorical values. In order to handle data with numerical values in this theory, a familiar concept of ‘wildcards’ was employed, and a new framework of rough sets based rule generation has been proposed. Two characters @ and # were introduced into this framework, and numerical patterns were also defined for numerical values. The concepts of ‘coarse’ and ‘fine’ for rules were explicitly defined according to numerical patterns. This paper enhances the previous framework, and describes the implementation of an utility program. This utility program is applied to the data in UCI Machine Learning Repository, and some useful rules are obtained. |
---|---|
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2008.p0426 |