Loading…

Hybrid Ensemble Construction with Selected Neural Networks

A Neural Network Ensemble (NNE) is convenient for improving classification task performance. Among the remarkable number of methods based on different techniques for constructing NNEs, Negative Correlation Learning (NCL), bagging, and boosting are the most popular. None of them, however, could show...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced computational intelligence and intelligent informatics 2011-08, Vol.15 (6), p.652-661
Main Authors: Akhand, M. A. H., Shill, Pintu Chandra, Murase, Kazuyuki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Neural Network Ensemble (NNE) is convenient for improving classification task performance. Among the remarkable number of methods based on different techniques for constructing NNEs, Negative Correlation Learning (NCL), bagging, and boosting are the most popular. None of them, however, could show better performance for all problems. To improve performance combining the complementary strengths of the individual methods, we propose two different ways to construct hybrid ensembles combining NCL with bagging and boosting. One produces a pool of predefined numbers of networks using standard NCL and bagging (or boosting) and then uses a genetic algorithm to select an optimal network subset for an NNE from the pool. Results of experiments confirmed that our proposals show consistently better performance with concise ensembles than conventional methods when tested using a suite of 25 benchmark problems.
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2011.p0652