Loading…
Joint Graph Regularization in a Homogeneous Subspace for Cross-Media Retrieval
The heterogeneity of multimodal data is the main challenge in cross-media retrieval; many methods have already been developed to address the problem. At present, subspace learning is one of the mainstream approaches for cross-media retrieval; its aim is to learn a latent shared subspace so that simi...
Saved in:
Published in: | Journal of advanced computational intelligence and intelligent informatics 2019-09, Vol.23 (5), p.939-946 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The heterogeneity of multimodal data is the main challenge in cross-media retrieval; many methods have already been developed to address the problem. At present, subspace learning is one of the mainstream approaches for cross-media retrieval; its aim is to learn a latent shared subspace so that similarities within cross-modal data can be measured in this subspace. However, most existing subspace learning algorithms only focus on supervised information, using labeled data for training to obtain one pair of mapping matrices. In this paper, we propose joint graph regularization based on semi-supervised learning cross-media retrieval (JGRHS), which makes full use of labeled and unlabeled data. We jointly considered correlation analysis and semantic information when learning projection matrices to maintain the closeness of pairwise data and semantic consistency; graph regularization is used to make learned transformation consistent with similarity constraints in both modalities. In addition, the retrieval results on three datasets indicate that the proposed method achieves good efficiency in theoretical research and practical applications. |
---|---|
ISSN: | 1343-0130 1883-8014 |
DOI: | 10.20965/jaciii.2019.p0939 |