Loading…
Magnetization Structure and its Temporal Change of Miyakejima Volcano, Japan, Revealed by Uncrewed Aerial Vehicle Aeromagnetic Survey
Miyakejima volcano experienced its latest eruption in 2000 with the summit subsidence, and the next event is expected in the near future. An aeromagnetic survey in Miyakejima was conducted in March 2021 in order to investigate the current state of its magnetization structure to identify the potentia...
Saved in:
Published in: | Journal of disaster research 2022-08, Vol.17 (5), p.644-653 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Miyakejima volcano experienced its latest eruption in 2000 with the summit subsidence, and the next event is expected in the near future. An aeromagnetic survey in Miyakejima was conducted in March 2021 in order to investigate the current state of its magnetization structure to identify the potential for another eruption and, thus, mitigate volcanic disaster. The survey flight was conducted using an uncrewed aerial vehicle (UAV), a multirotor drone, to deploy a scalar magnetometer. After processing geomagnetic field data from this survey, in combination with data from previous surveys conducted by using another UAV, an uncrewed helicopter, the average magnetization intensity was determined to be 12.4 A/m. Further, the surrounding area of the crater was relatively highly magnetized; however, the crater rim had a low magnetization intensity. Temporal variation was detected between 2014 and 2021 and dominated the central part of the observation area. Decreased magnetization intensity was identified beneath the caldera, which may become recently demagnetized due to heat supply traveling through fractures in the impermeable layer from the deep heat reservoir. |
---|---|
ISSN: | 1881-2473 1883-8030 |
DOI: | 10.20965/jdr.2022.p0644 |