Loading…
EXISTENCE OF REGULAR NUT GRAPHS AND THE FOWLER CONSTRUCTION
In this paper the problem of the existence of regular nut graphs is addressed. A generalization of Fowler’s Construction which is a local enlargement applied to a vertex in a graph is introduced to generate nut graphs of higher order. Let N(ρ) denote the set of integers n such that there exists a re...
Saved in:
Published in: | Applicable analysis and discrete mathematics 2023, Vol.17 (2), p.321-333 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper the problem of the existence of regular nut graphs is addressed. A generalization of Fowler’s Construction which is a local enlargement applied to a vertex in a graph is introduced to generate nut graphs of higher order. Let N(ρ) denote the set of integers n such that there exists a regular nut graph of degree ρ and order n. It is proven that N(3) = {12} ∪ {2k : k ≥ 9} and that N(4) = {8, 10, 12} ∪ {n : n ≥ 14}. The problem of determining N(ρ) for ρ > 4 remains completely open. |
---|---|
ISSN: | 1452-8630 2406-100X |
DOI: | 10.2298/AADM190517028G |