Loading…
The Classification of Punctured-Torus Groups
Thurston's ending lamination conjecture proposes that a finitely generated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus...
Saved in:
Published in: | Annals of mathematics 1999-03, Vol.149 (2), p.559-626 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thurston's ending lamination conjecture proposes that a finitely generated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be thought of as representations of the fundamental group of a punctured torus. As a consequence we verify the conjectural topological description of the deformation space of punctured-torus groups (including Bers' conjecture that the quasi-Fuchsian groups are dense in this space) and prove a rigidity theorem: two punctured-torus groups are quasi-conformally conjugate if and only if they are topologically conjugate. |
---|---|
ISSN: | 0003-486X |
DOI: | 10.2307/120976 |