Loading…

The Classification of Punctured-Torus Groups

Thurston's ending lamination conjecture proposes that a finitely generated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus...

Full description

Saved in:
Bibliographic Details
Published in:Annals of mathematics 1999-03, Vol.149 (2), p.559-626
Main Author: Minsky, Yair N.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-d450974b9405201dcc8656bd6f1fa48aeaaa7f5823d03f512106134cdf6d88843
cites
container_end_page 626
container_issue 2
container_start_page 559
container_title Annals of mathematics
container_volume 149
creator Minsky, Yair N.
description Thurston's ending lamination conjecture proposes that a finitely generated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be thought of as representations of the fundamental group of a punctured torus. As a consequence we verify the conjectural topological description of the deformation space of punctured-torus groups (including Bers' conjecture that the quasi-Fuchsian groups are dense in this space) and prove a rigidity theorem: two punctured-torus groups are quasi-conformally conjugate if and only if they are topologically conjugate.
doi_str_mv 10.2307/120976
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2307_120976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>120976</jstor_id><sourcerecordid>120976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-d450974b9405201dcc8656bd6f1fa48aeaaa7f5823d03f512106134cdf6d88843</originalsourceid><addsrcrecordid>eNp1j81Kw0AYRWdRobXaZwgIrhz95n-6lKBVKOgiQndhOj-YUjtlvmTh2xuJW1eXC4d7OYSsGNxzAeaBcVgbPSMLABBUWr2bk0vEw1iN0WZB7prPWNVHh9ilzru-y6cqp-p9OPl-KDHQJpcBq03JwxmvyEVyR4zXf7kkH89PTf1Ct2-b1_pxS71gqqdBqvFV7tcSFAcWvLda6X3QiSUnrYvOOZOU5SKASIpxBpoJ6UPSwVorxZLcTru-ZMQSU3su3Zcr3y2D9ternbxG8GYCD9jn8h_1A4-aSxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Classification of Punctured-Torus Groups</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Minsky, Yair N.</creator><creatorcontrib>Minsky, Yair N.</creatorcontrib><description>Thurston's ending lamination conjecture proposes that a finitely generated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be thought of as representations of the fundamental group of a punctured torus. As a consequence we verify the conjectural topological description of the deformation space of punctured-torus groups (including Bers' conjecture that the quasi-Fuchsian groups are dense in this space) and prove a rigidity theorem: two punctured-torus groups are quasi-conformally conjugate if and only if they are topologically conjugate.</description><identifier>ISSN: 0003-486X</identifier><identifier>DOI: 10.2307/120976</identifier><language>eng</language><publisher>Princeton University Press</publisher><subject>Homeomorphism ; Laminates ; Mathematical cusps ; Mathematical theorems ; Perceptron convergence procedure ; Topological theorems ; Triangulation ; Vertices</subject><ispartof>Annals of mathematics, 1999-03, Vol.149 (2), p.559-626</ispartof><rights>Copyright 1999 Princeton University (Mathematics Department)</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-d450974b9405201dcc8656bd6f1fa48aeaaa7f5823d03f512106134cdf6d88843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/120976$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/120976$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Minsky, Yair N.</creatorcontrib><title>The Classification of Punctured-Torus Groups</title><title>Annals of mathematics</title><description>Thurston's ending lamination conjecture proposes that a finitely generated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be thought of as representations of the fundamental group of a punctured torus. As a consequence we verify the conjectural topological description of the deformation space of punctured-torus groups (including Bers' conjecture that the quasi-Fuchsian groups are dense in this space) and prove a rigidity theorem: two punctured-torus groups are quasi-conformally conjugate if and only if they are topologically conjugate.</description><subject>Homeomorphism</subject><subject>Laminates</subject><subject>Mathematical cusps</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Topological theorems</subject><subject>Triangulation</subject><subject>Vertices</subject><issn>0003-486X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1j81Kw0AYRWdRobXaZwgIrhz95n-6lKBVKOgiQndhOj-YUjtlvmTh2xuJW1eXC4d7OYSsGNxzAeaBcVgbPSMLABBUWr2bk0vEw1iN0WZB7prPWNVHh9ilzru-y6cqp-p9OPl-KDHQJpcBq03JwxmvyEVyR4zXf7kkH89PTf1Ct2-b1_pxS71gqqdBqvFV7tcSFAcWvLda6X3QiSUnrYvOOZOU5SKASIpxBpoJ6UPSwVorxZLcTru-ZMQSU3su3Zcr3y2D9ternbxG8GYCD9jn8h_1A4-aSxE</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Minsky, Yair N.</creator><general>Princeton University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990301</creationdate><title>The Classification of Punctured-Torus Groups</title><author>Minsky, Yair N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-d450974b9405201dcc8656bd6f1fa48aeaaa7f5823d03f512106134cdf6d88843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Homeomorphism</topic><topic>Laminates</topic><topic>Mathematical cusps</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Topological theorems</topic><topic>Triangulation</topic><topic>Vertices</topic><toplevel>online_resources</toplevel><creatorcontrib>Minsky, Yair N.</creatorcontrib><collection>CrossRef</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minsky, Yair N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Classification of Punctured-Torus Groups</atitle><jtitle>Annals of mathematics</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>149</volume><issue>2</issue><spage>559</spage><epage>626</epage><pages>559-626</pages><issn>0003-486X</issn><abstract>Thurston's ending lamination conjecture proposes that a finitely generated Kleinian group is uniquely determined (up to isometry) by the topology of its quotient and a list of invariants that describe the asymptotic geometry of its ends. We present a proof of this conjecture for punctured-torus groups. These are free two-generator Kleinian groups with parabolic commutator, which should be thought of as representations of the fundamental group of a punctured torus. As a consequence we verify the conjectural topological description of the deformation space of punctured-torus groups (including Bers' conjecture that the quasi-Fuchsian groups are dense in this space) and prove a rigidity theorem: two punctured-torus groups are quasi-conformally conjugate if and only if they are topologically conjugate.</abstract><pub>Princeton University Press</pub><doi>10.2307/120976</doi><tpages>68</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-486X
ispartof Annals of mathematics, 1999-03, Vol.149 (2), p.559-626
issn 0003-486X
language eng
recordid cdi_crossref_primary_10_2307_120976
source JSTOR Archival Journals and Primary Sources Collection
subjects Homeomorphism
Laminates
Mathematical cusps
Mathematical theorems
Perceptron convergence procedure
Topological theorems
Triangulation
Vertices
title The Classification of Punctured-Torus Groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Classification%20of%20Punctured-Torus%20Groups&rft.jtitle=Annals%20of%20mathematics&rft.au=Minsky,%20Yair%20N.&rft.date=1999-03-01&rft.volume=149&rft.issue=2&rft.spage=559&rft.epage=626&rft.pages=559-626&rft.issn=0003-486X&rft_id=info:doi/10.2307/120976&rft_dat=%3Cjstor_cross%3E120976%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-d450974b9405201dcc8656bd6f1fa48aeaaa7f5823d03f512106134cdf6d88843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=120976&rfr_iscdi=true