Loading…
The caudal characteristic curve of queues
Many queues and related stochastic models, and in particular those that have a matrix-geometric stationary probability vector, have steady-state queue-length densities that are asymptotically geometric. The graph of the asymptotic rate η of these densities as a function of the traffic intensity ρ is...
Saved in:
Published in: | Advances in applied probability 1986-03, Vol.18 (1), p.221-254 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many queues and related stochastic models, and in particular those that have a matrix-geometric stationary probability vector, have steady-state queue-length densities that are asymptotically geometric. The graph of the asymptotic rate η of these densities as a function of the traffic intensity ρ is the caudal characteristic curve. This is an informative graph from which a number of qualitative inferences about the behavior of the queue may be drawn. The caudal characteristic curve may be computed (by elementary algorithms) for several useful models for which a complete exact numerical solution is not practically feasible. These include queues with certain types of superimposed arrival processes and/or multiple non-exponential servers. The necessary theorems which lead to the algorithmic procedures as well as the interpretation of several numerical examples are discussed. |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.2307/1427244 |