Loading…
A bayesian approach to a reliability problem: Theory, analysis and interesting numerics
We consider approximate Bayesian inference about the quantity R = P [$Y_{2}>Y_{1}$] when both the random variables Y1,Y2have expectations that depend on certain explanatory variables. Our interest centers on certain characteristics of the posterior of R under Jeffreys's prior, such as its me...
Saved in:
Published in: | Canadian journal of statistics 1997-06, Vol.25 (2), p.143-158 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider approximate Bayesian inference about the quantity R = P [$Y_{2}>Y_{1}$] when both the random variables Y1,Y2have expectations that depend on certain explanatory variables. Our interest centers on certain characteristics of the posterior of R under Jeffreys's prior, such as its mean, variance and percentiles. Since the posterior of R is not available in closed form, several approximation procedures are introduced, and their relative performance is assessed using two real datasets. /// Nous considérons l'inférence Bayesienne approximative pour la quantité R = P [$Y_{2}>Y_{1}$], lorsque les deux variables aléatoires Y1,Y2ont des espérances qui dépendent de certaines variables explicatives. Notre intérêt se centre sur certaines caractèristiques de la loi a posteriori de R correspondant à une loi a priori de Jeffrey, telle que sa moyenne, sa variance et ses percentiles. Etant donné que la loi a posteriori de R n'est pas disponible sous forme explicite, nous proposons plusieurs procédures d'approximation et nous évaluons leur performance relative en utilisant deux ensembles de données réelles. |
---|---|
ISSN: | 0319-5724 1708-945X |
DOI: | 10.2307/3315728 |