Loading…

A bayesian approach to a reliability problem: Theory, analysis and interesting numerics

We consider approximate Bayesian inference about the quantity R = P [$Y_{2}>Y_{1}$] when both the random variables Y1,Y2have expectations that depend on certain explanatory variables. Our interest centers on certain characteristics of the posterior of R under Jeffreys's prior, such as its me...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of statistics 1997-06, Vol.25 (2), p.143-158
Main Authors: Guttman, Irwin, Papandonatos, George D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider approximate Bayesian inference about the quantity R = P [$Y_{2}>Y_{1}$] when both the random variables Y1,Y2have expectations that depend on certain explanatory variables. Our interest centers on certain characteristics of the posterior of R under Jeffreys's prior, such as its mean, variance and percentiles. Since the posterior of R is not available in closed form, several approximation procedures are introduced, and their relative performance is assessed using two real datasets. /// Nous considérons l'inférence Bayesienne approximative pour la quantité R = P [$Y_{2}>Y_{1}$], lorsque les deux variables aléatoires Y1,Y2ont des espérances qui dépendent de certaines variables explicatives. Notre intérêt se centre sur certaines caractèristiques de la loi a posteriori de R correspondant à une loi a priori de Jeffrey, telle que sa moyenne, sa variance et ses percentiles. Etant donné que la loi a posteriori de R n'est pas disponible sous forme explicite, nous proposons plusieurs procédures d'approximation et nous évaluons leur performance relative en utilisant deux ensembles de données réelles.
ISSN:0319-5724
1708-945X
DOI:10.2307/3315728