Loading…
Towards a computational prediction for the tumor selective accumulation of paramagnetic nanoparticles in retinoblastoma cells
Retinoblastoma is a malignant growth affecting retina. An original combination of modified Non-Markov and Gompertzian computational approaches is proven of being a reliable tool for prediction of tumor selective accumulation of the bivalent metal isotopes (25Mg, 43Ca, 60Co, 67Zn, …) — releasing nano...
Saved in:
Published in: | Bulletin of RSMU 2018-01 (6), p.68-73 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Retinoblastoma is a malignant growth affecting retina. An original combination of modified Non-Markov and Gompertzian computational approaches is proven of being a reliable tool for prediction of tumor selective accumulation of the bivalent metal isotopes (25Mg, 43Ca, 60Co, 67Zn, …) — releasing nanoparticles in human retinoblastoma cells. This mathematical model operates with a starting point of the discriminative drug uptake caused by a gap-like distinction between the neighboring malignant and normal cell proliferation rates. This takes into account both pharmacokinetic and pharmacodynamic peculiarities of PMC16, fullerene-C60 based nanoparticles, known for their unique capabilities for a cancer-targeted delivery of paramagnetic metal isotopes followed by an essential chemotherapeutic effect. Being dependent on a tumor growth rate but not on the neoplasm steady state mass, a randomized level of drug accumulation in retinoblastoma cells has been formalized as a predictive paradigm suitable to optimize an ongoing PMC16 preclinical research. |
---|---|
ISSN: | 2500-1094 2542-1204 |
DOI: | 10.24075/brsmu.2018.078 |