Loading…
Concept of a Green Propulsion System for Ioshex, Designed to Perform In-Orbit Randezvous and Docking
Recent challenges in space access include cost optimization and space debris reduction. The European Space Agency has envisioned the evolution of in-orbit transportation involving re-usable service vehicles, moving payloads from high parking orbits to their target orbits. This concept for orbital in...
Saved in:
Published in: | Transactions on aerospace research 2024-09, Vol.2024 (3), p.58-76 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent challenges in space access include cost optimization and space debris reduction. The European Space Agency has envisioned the evolution of in-orbit transportation involving re-usable service vehicles, moving payloads from high parking orbits to their target orbits. This concept for orbital infrastructure requires de-risking activities and the development of building blocks, such as standardized interfaces and communication. Mastery of close-proximity operations and docking is essential for the new transportation system. This new branch of space operations represents a good opportunity to introduce more sustainable propulsion solutions, especially given the high costs and uncertain future of hydrazine and its derivatives. IOSHEX, a service spacecraft to be equipped with a green propulsion system utilizing 98% hydrogen peroxide, serves as a reference. This paper presents a design concept for this propulsion system, including trade-off analyses, calculations, and a three-dimensional model integrated with IOSHEX. |
---|---|
ISSN: | 2545-2835 2545-2835 |
DOI: | 10.2478/tar-2024-0016 |