Loading…

High Sensibility Optical Water Sensor Using a One-Dimensional Defective Photonic Crystal

In recent years, there has been more research on the use of defective photonic crystals (PCs) in the field of detection. The application of these PCs as liquid sensors seems very promising, because of their miniaturization and high spectral sensitivities. This work aims to study theoretically the ef...

Full description

Saved in:
Bibliographic Details
Published in:Optical memory & neural networks 2021-10, Vol.30 (4), p.298-311
Main Authors: Youssef Ben-Ali, El Kadmiri, Ilyass, Falyouni, Farid, Essahlaoui, Abdelouahed, Bria, Driss
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, there has been more research on the use of defective photonic crystals (PCs) in the field of detection. The application of these PCs as liquid sensors seems very promising, because of their miniaturization and high spectral sensitivities. This work aims to study theoretically the effect of the refractive index of polluted water on the transmission spectrum of a one-dimensional photonic crystal (PC), made of alternating layers of silicon dioxide and titanium dioxide and containing two defect layers of common heavy oil. These two defect layers will be filled with polluted water. The insertion of two polluted water layers of thickness 360 nm inside the structure, creates two very narrow defect modes in the gaps with a high-quality factor Q ( Q = 707) and a maximum transmittance ( 100%) in the wavelength infrared interval belonging to (1090–1115 nm). The modes falling inside the band gaps are very sensitive to the thicknesses of the defects and the refractive indexes of the polluted water. They shift to higher wavelengths when the refractive indexes of defects increases. A detection limit 7 × 10 –3 refractive index units has been derived from measurements with a sensitivity of 405 nm per refractive index unit. Therefore, our proposed structure is a good candidate for the refractive index water sensor design which has great application prospects in optical, medical, and biological sensing.
ISSN:1060-992X
1934-7898
DOI:10.3103/S1060992X21040032