Loading…
Application of normalized key functions in a problem of branching of periodic extremals
In this paper we construct a procedure of approximate calculation and analysis of branches of bifurcating solutions to a periodic variational problem. The goal of the work is a study of bifurcation of cycles in dynamic systems in cases of double resonances 1: 2: 3, 1: 2: 4, p : q : p + q and others....
Saved in:
Published in: | Russian mathematics 2015-08, Vol.59 (8), p.9-18 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we construct a procedure of approximate calculation and analysis of branches of bifurcating solutions to a periodic variational problem. The goal of the work is a study of bifurcation of cycles in dynamic systems in cases of double resonances 1: 2: 3, 1: 2: 4,
p
:
q
:
p
+
q
and others. An ordinary differential equation (ODE) of the sixth order is considered as a general model equation. Application of the Lyapunov–Schmidt method and transition to boundary and angular singularities allow to simplify a description of branches of extremals and caustics. Also we list systems of generating algebraic invariants under an orthogonal semi-free action of the circle on ℝ
6
and normal forms of the principal part of the key functions. |
---|---|
ISSN: | 1066-369X 1934-810X |
DOI: | 10.3103/S1066369X15080022 |