Loading…

Residual stress distribution in a lamellar model of the arterial wall

Excessive wall circumferential stress in arteries caused by luminal pressure leads to endothelial damage and clinical consequences. In addition to circumferential stress, arterial wall contains residual stress with compressive and tensile components on intima and adventitia sides. The intimal compre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical engineering & technology 2010-10, Vol.34 (7-8), p.422-428
Main Authors: Haghighipour, Nooshin, Tafazzoli-Shadpour, Mohammad, Avolio, Albert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Excessive wall circumferential stress in arteries caused by luminal pressure leads to endothelial damage and clinical consequences. In addition to circumferential stress, arterial wall contains residual stress with compressive and tensile components on intima and adventitia sides. The intimal compressive component compensates part of tensile stress induced by blood pressure, hence reduces severity of endothelial tension. The opening angle caused by radial cut of arterial ring defines residual stress. In this study, finite element modelling is used to evaluate residual stress in a lamellar model of human aorta with differing opening angle and elastic modulus. Results show non-linear residual stress profiles across wall thickness, influenced by structural and mechanical parameters. Elevation of opening angle from 50° to 90° leads to increase of intimal compressive component compensating up to 32.6% of the pressure-induced tensile stress. Results may be applied in study of endothelial injury caused by excessive stress in situations such as aging, hypertension and atherosclerosis.
ISSN:0309-1902
1464-522X
DOI:10.3109/03091902.2010.514974