Loading…
An Efficient Method for Generating a Super-Sized and Heterogeneous Pore-Throat Network Model of Rock
The super-sized pore-throat network model can reflect both microscopic pore characteristics and macroscopic heterogeneity and is excellent in describing cross-scale flow fields. At present, there is no algorithm that can generate a micro pore-throat network model at a macro reservoir scale. This stu...
Saved in:
Published in: | Applied sciences 2025-01, Vol.15 (3), p.1047 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The super-sized pore-throat network model can reflect both microscopic pore characteristics and macroscopic heterogeneity and is excellent in describing cross-scale flow fields. At present, there is no algorithm that can generate a micro pore-throat network model at a macro reservoir scale. This study examines algorithms for super-sized pore-throat network reconstruction using actual core sample data. It conducts a random simulation of mineral growth and dissolution under the constraints of four microscopic pore structure parameters: porosity, coordination number, pore radius, and throat radius. This approach achieves high-precision, super-sized, and regional pore-throat network modeling. Comparative analysis shows that these four parameters effectively guide the random growth process of super-sized pore-throat networks. The overall similarity between the generated pore-throat network model and real core samples is 88.7% on average. In addition, the algorithm can partition and control the generation of pore-throat networks according to sedimentary facies. The 100-megapixel model with 85,000 pores was generated in 455.9 s. This method can generate cross-scale models and provides a basis for cross-scale modeling in physical simulation experiments and numerical simulations. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app15031047 |