Loading…
Future Image Synthesis for Diabetic Retinopathy Based on the Lesion Occurrence Probability
Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every sta...
Saved in:
Published in: | Electronics (Basel) 2021-03, Vol.10 (6), p.726 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in every stage of DR. While synthesizing future fundus images, the task of predicting the progression of the disease state is very challenging since we need a lot of longitudinal data over a long period of time. Even if the longitudinal data are collected, there is a pixel-level difference between the current fundus image and the target future image. It is difficult to train a model based on deep learning for synthesizing future fundus images that considers the lesion change. In this paper, we synthesize future fundus images by considering the progression of the disease with a two-step training approach to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus image using only a lesion segmentation mask and vessel segmentation mask from a large dataset for a fundus generator. In the second step, we train a lesion probability predictor to create a probability map that contains the occurrence probability information of the lesion. Finally, based on the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted future fundus image. We visually demonstrate not only the capacity of the fundus generator that can control the pathological information but also the prediction of the disease progression on fundus images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a meaningful capability by comparing the scores of each class of DR severity, which are obtained by passing the predicted future image and real future image through an evaluation model. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10060726 |