Loading…

Parallel Loop Control for Torque and Angular Velocity of BLDC Motors with DTC Commutation

This paper is focused in the development of a parallel control loop of the angular velocity and torque for Brushless Direct Current (BLDC) motors. This parallel loop is proposed as an improvement for the performance of those cascaded solutions commonly reported in the body of literature of the field...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2020-02, Vol.9 (2), p.279
Main Authors: Coballes-Pantoja, J., Gómez-Fuentes, R., Noriega, J. R., García-Delgado, L. A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is focused in the development of a parallel control loop of the angular velocity and torque for Brushless Direct Current (BLDC) motors. This parallel loop is proposed as an improvement for the performance of those cascaded solutions commonly reported in the body of literature of the field. Performance is improved by reducing the steady state error of the speed considerably when compared with the typical cascaded loop solution under a commanded change of torque. In addition, the steady state response of the parallel loop is reached in a shorter time. Simulations were designed to carry out a comparison between both methodologies. The results of these simulations consider only changes in the set point for speed or torque and are reported here. The control signal was applied to a simulated driver using a switching method known as Direct Torque Control of 2 and 3 phases (DTC-2+3P). These preliminary results show that the parallel control loop outperforms the cascaded control of BLDC motors.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9020279