Loading…

Waste Slag from Heating Plants as a Partial Replacement for Cement in Mortar and Concrete Production. Part I—Physical–Chemical and Physical–Mechanical Characterization of Slag

Numerous factors influence the complexity of environmental and waste management problems, and the most significant goal is the reuse of materials that have completed their “life cycle” and the reduction in the use of new resources. In order to reduce impact of waste slag on the environment, in the p...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2020-11, Vol.10 (11), p.992
Main Authors: Nedeljković, Andrijana, Stojmenović, Marija, Gulicovski, Jelena, Ristić, Nenad, Milićević, Sonja, Krstić, Jugoslav, Kragović, Milan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerous factors influence the complexity of environmental and waste management problems, and the most significant goal is the reuse of materials that have completed their “life cycle” and the reduction in the use of new resources. In order to reduce impact of waste slag on the environment, in the present study, waste slag, generated in heating plants after lignite combustion, was characterized in detail and tested for application as a replacement for cement in mortar or concrete production. For physical–chemical characterization of slag, different experimental and instrumental techniques were used such as chemical composition and determination of the content of heavy metals, investigation of morphological and textural properties, thermal analysis, X-ray, and infrared spectroscopy. Physical–mechanical characterization of slag was also performed and included determination of activity index, water requirement, setting time and soundness. A leaching test was also performed. Presented results show that waste slag may be used in mortar and concrete production as a partial cement replacement, but after additional combustion at 650 °C and partial replacement of slag with silica fume in the minimal amount of 12%. The maximal obtained cement replacement was 20% (17.8% slag and 2.2% of silica fume).
ISSN:2075-163X
2075-163X
DOI:10.3390/min10110992