Loading…

Generalization of Markov Diophantine Equation via Generalized Cluster Algebra

In this paper, we deal with two classes of Diophantine equations, $x^2+y^2+z^2+k_3xy+k_1yz+k_2zx=(3+k_1+k_2+k_3)xyz$ and $x^2+y^4+z^4+2xy^2+ky^2z^2+2xz^2=(7+k)xy^2z^2$, where $k_1,k_2,k_3,k$ are nonnegative integers. The former is known as the Markov Diophantine equation if $k_1=k_2=k_3=0$, and the...

Full description

Saved in:
Bibliographic Details
Published in:The Electronic journal of combinatorics 2023-10, Vol.30 (4)
Main Authors: Gyoda, Yasuaki, Matsushita, Kodai
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we deal with two classes of Diophantine equations, $x^2+y^2+z^2+k_3xy+k_1yz+k_2zx=(3+k_1+k_2+k_3)xyz$ and $x^2+y^4+z^4+2xy^2+ky^2z^2+2xz^2=(7+k)xy^2z^2$, where $k_1,k_2,k_3,k$ are nonnegative integers. The former is known as the Markov Diophantine equation if $k_1=k_2=k_3=0$, and the latter is a Diophantine equation recently studied by Lampe if $k=0$. We give algorithms to enumerate all positive integer solutions to these equations, and discuss the structures of the generalized cluster algebras behind them.
ISSN:1077-8926
1077-8926
DOI:10.37236/11420