Loading…
Alon–Boppana-Type Bounds for Weighted Graphs
The unraveled ball of radius $r$ centered at a vertex $v$ in a weighted graph $G$ is the ball of radius $r$ centered at $v$ in the universal cover of $G$. We present a general bound on the maximum spectral radius of unraveled balls of fixed radius in a weighted graph. The weighted degree of a vertex...
Saved in:
Published in: | The Electronic journal of combinatorics 2024-02, Vol.31 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unraveled ball of radius $r$ centered at a vertex $v$ in a weighted graph $G$ is the ball of radius $r$ centered at $v$ in the universal cover of $G$. We present a general bound on the maximum spectral radius of unraveled balls of fixed radius in a weighted graph.
The weighted degree of a vertex in a weighted graph is the sum of weights of edges incident to the vertex. A weighted graph is called regular if the weighted degrees of its vertices are the same. Using the result on unraveled balls, we prove a variation of the Alon–Boppana theorem for regular weighted graphs. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/12212 |