Loading…
The Ramsey Number of Loose Paths in 3-Uniform Hypergraphs
Recently, asymptotic values of 2-color Ramsey numbers for loose cycles and also loose paths were determined. Here we determine the 2-color Ramsey number of $3$-uniform loose paths when one of the paths is significantly larger than the other: for every $n\geq \Big\lfloor\frac{5m}{4}\Big\rfloor$, we...
Saved in:
Published in: | The Electronic journal of combinatorics 2013-01, Vol.20 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, asymptotic values of 2-color Ramsey numbers for loose cycles and also loose paths were determined. Here we determine the 2-color Ramsey number of $3$-uniform loose paths when one of the paths is significantly larger than the other: for every $n\geq \Big\lfloor\frac{5m}{4}\Big\rfloor$, we show that $$R(\mathcal{P}^3_n,\mathcal{P}^3_m)=2n+\Big\lfloor\frac{m+1}{2}\Big\rfloor.$$ |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/2725 |