Loading…
Shattering-Extremal Set Systems of VC Dimension at most 2
We say that a set system $\mathcal{F}\subseteq 2^{[n]}$ shatters a given set $S\subseteq [n]$ if $2^S=\{F~\cap~S ~:~F~\in~\mathcal{F}\}$. The Sauer inequality states that in general, a set system $\mathcal{F}$ shatters at least $|\mathcal{F}|$ sets. Here we concentrate on the case of equality. A set...
Saved in:
Published in: | The Electronic journal of combinatorics 2014-11, Vol.21 (4) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We say that a set system $\mathcal{F}\subseteq 2^{[n]}$ shatters a given set $S\subseteq [n]$ if $2^S=\{F~\cap~S ~:~F~\in~\mathcal{F}\}$. The Sauer inequality states that in general, a set system $\mathcal{F}$ shatters at least $|\mathcal{F}|$ sets. Here we concentrate on the case of equality. A set system is called shattering-extremal if it shatters exactly $|\mathcal{F}|$ sets. In this paper we characterize shattering-extremal set systems of Vapnik-Chervonenkis dimension $2$ in terms of their inclusion graphs, and as a corollary we answer an open question about leaving out elements from shattering-extremal set systems in the case of families of Vapnik-Chervonenkis dimension $2$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/4548 |