Loading…
On Super-Strong Wilf Equivalence Classes of Permutations
Super-strong Wilf equivalence is a type of Wilf equivalence on words that was originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Combin. 16(2)] in $2009$. We provide a necessary and sufficient condition for two permutations in $n$ letters to be super-strongly Wilf equiva...
Saved in:
Published in: | The Electronic journal of combinatorics 2018-06, Vol.25 (2) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Super-strong Wilf equivalence is a type of Wilf equivalence on words that was originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Combin. 16(2)] in $2009$. We provide a necessary and sufficient condition for two permutations in $n$ letters to be super-strongly Wilf equivalent, using distances between letters within a permutation. Furthermore, we give a characterization of such equivalence classes via two-colored binary trees. This allows us to prove, in the case of super-strong Wilf equivalence, the conjecture stated in the same article by Kitaev et al. that the cardinality of each Wilf equivalence class is a power of $2$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/6808 |