Loading…
On Super-Strong Wilf Equivalence Classes of Permutations
Super-strong Wilf equivalence is a type of Wilf equivalence on words that was originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Combin. 16(2)] in $2009$. We provide a necessary and sufficient condition for two permutations in $n$ letters to be super-strongly Wilf equiva...
Saved in:
Published in: | The Electronic journal of combinatorics 2018-06, Vol.25 (2) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 25 |
creator | Hadjiloucas, Demetris Michos, Ioannis Savvidou, Christina |
description | Super-strong Wilf equivalence is a type of Wilf equivalence on words that was originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Combin. 16(2)] in $2009$. We provide a necessary and sufficient condition for two permutations in $n$ letters to be super-strongly Wilf equivalent, using distances between letters within a permutation. Furthermore, we give a characterization of such equivalence classes via two-colored binary trees. This allows us to prove, in the case of super-strong Wilf equivalence, the conjecture stated in the same article by Kitaev et al. that the cardinality of each Wilf equivalence class is a power of $2$. |
doi_str_mv | 10.37236/6808 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_6808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_6808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-83b87368527595805e2caed4f3226c58f4cefe82fad2d704b1881b3b3d7a6e503</originalsourceid><addsrcrecordid>eNpNj01LxDAUAIMouK77H3LxGE1emuT1KGXVhYUVVvFY0vRFKt12TVrBfy9-HDzNnAaGsZWS19qBtjcWJZ6whZLOCSzBnv7zc3aR85uUCsrSLBjuBr6fj5TEfkrj8Mpfuj7y9fvcffiehkC86n3OlPkY-SOlwzz5qRuHfMnOou8zrf64ZM9366fqQWx395vqdisCKDsJ1A06bdGAM6VBaQiCp7aIGsAGg7EIFAkh-hZaJ4tGIapGN7p13pKResmufrshjTknivUxdQefPmsl65_d-ntXfwExAkYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Super-Strong Wilf Equivalence Classes of Permutations</title><source>Freely Accessible Science Journals</source><creator>Hadjiloucas, Demetris ; Michos, Ioannis ; Savvidou, Christina</creator><creatorcontrib>Hadjiloucas, Demetris ; Michos, Ioannis ; Savvidou, Christina</creatorcontrib><description>Super-strong Wilf equivalence is a type of Wilf equivalence on words that was originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Combin. 16(2)] in $2009$. We provide a necessary and sufficient condition for two permutations in $n$ letters to be super-strongly Wilf equivalent, using distances between letters within a permutation. Furthermore, we give a characterization of such equivalence classes via two-colored binary trees. This allows us to prove, in the case of super-strong Wilf equivalence, the conjecture stated in the same article by Kitaev et al. that the cardinality of each Wilf equivalence class is a power of $2$.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/6808</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2018-06, Vol.25 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hadjiloucas, Demetris</creatorcontrib><creatorcontrib>Michos, Ioannis</creatorcontrib><creatorcontrib>Savvidou, Christina</creatorcontrib><title>On Super-Strong Wilf Equivalence Classes of Permutations</title><title>The Electronic journal of combinatorics</title><description>Super-strong Wilf equivalence is a type of Wilf equivalence on words that was originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Combin. 16(2)] in $2009$. We provide a necessary and sufficient condition for two permutations in $n$ letters to be super-strongly Wilf equivalent, using distances between letters within a permutation. Furthermore, we give a characterization of such equivalence classes via two-colored binary trees. This allows us to prove, in the case of super-strong Wilf equivalence, the conjecture stated in the same article by Kitaev et al. that the cardinality of each Wilf equivalence class is a power of $2$.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNj01LxDAUAIMouK77H3LxGE1emuT1KGXVhYUVVvFY0vRFKt12TVrBfy9-HDzNnAaGsZWS19qBtjcWJZ6whZLOCSzBnv7zc3aR85uUCsrSLBjuBr6fj5TEfkrj8Mpfuj7y9fvcffiehkC86n3OlPkY-SOlwzz5qRuHfMnOou8zrf64ZM9366fqQWx395vqdisCKDsJ1A06bdGAM6VBaQiCp7aIGsAGg7EIFAkh-hZaJ4tGIapGN7p13pKResmufrshjTknivUxdQefPmsl65_d-ntXfwExAkYG</recordid><startdate>20180622</startdate><enddate>20180622</enddate><creator>Hadjiloucas, Demetris</creator><creator>Michos, Ioannis</creator><creator>Savvidou, Christina</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180622</creationdate><title>On Super-Strong Wilf Equivalence Classes of Permutations</title><author>Hadjiloucas, Demetris ; Michos, Ioannis ; Savvidou, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-83b87368527595805e2caed4f3226c58f4cefe82fad2d704b1881b3b3d7a6e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadjiloucas, Demetris</creatorcontrib><creatorcontrib>Michos, Ioannis</creatorcontrib><creatorcontrib>Savvidou, Christina</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadjiloucas, Demetris</au><au>Michos, Ioannis</au><au>Savvidou, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Super-Strong Wilf Equivalence Classes of Permutations</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2018-06-22</date><risdate>2018</risdate><volume>25</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Super-strong Wilf equivalence is a type of Wilf equivalence on words that was originally introduced as strong Wilf equivalence by Kitaev et al. [Electron. J. Combin. 16(2)] in $2009$. We provide a necessary and sufficient condition for two permutations in $n$ letters to be super-strongly Wilf equivalent, using distances between letters within a permutation. Furthermore, we give a characterization of such equivalence classes via two-colored binary trees. This allows us to prove, in the case of super-strong Wilf equivalence, the conjecture stated in the same article by Kitaev et al. that the cardinality of each Wilf equivalence class is a power of $2$.</abstract><doi>10.37236/6808</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2018-06, Vol.25 (2) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_6808 |
source | Freely Accessible Science Journals |
title | On Super-Strong Wilf Equivalence Classes of Permutations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Super-Strong%20Wilf%20Equivalence%20Classes%20of%20Permutations&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Hadjiloucas,%20Demetris&rft.date=2018-06-22&rft.volume=25&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/6808&rft_dat=%3Ccrossref%3E10_37236_6808%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-83b87368527595805e2caed4f3226c58f4cefe82fad2d704b1881b3b3d7a6e503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |