Loading…
Smaller Subgraphs of Minimum Degree $k
In 1990 Erdős, Faudree, Rousseau and Schelp proved that for $k \ge 2$, every graph with $n \ge k+1$ vertices and $(k-1)(n-k+2)+\binom{k-2}{2}+1$ edges contains a subgraph of minimum degree $k$ on at most $n-\sqrt{n/6k^3}$ vertices. They conjectured that it is possible to remove at least $\epsilon_k...
Saved in:
Published in: | The Electronic journal of combinatorics 2017-10, Vol.24 (4) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In 1990 Erdős, Faudree, Rousseau and Schelp proved that for $k \ge 2$, every graph with $n \ge k+1$ vertices and $(k-1)(n-k+2)+\binom{k-2}{2}+1$ edges contains a subgraph of minimum degree $k$ on at most $n-\sqrt{n/6k^3}$ vertices. They conjectured that it is possible to remove at least $\epsilon_k n$ many vertices and remain with a subgraph of minimum degree $k$, for some $\epsilon_k>0$. We make progress towards their conjecture by showing that one can remove at least order of $\Omega(n/\log n)$ many vertices. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/7167 |