Loading…
Minimum Supports of Eigenfunctions with the Second Largest Eigenvalue of the Star Graph
The Star graph $S_n$, $n\ge 3$, is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\{(12),(13),\ldots,(1n)\}$. In this work we study eigenfunctions of $S_n$ corresponding to the second largest eigenvalue $n-2$. For $n\ge 8$ and $n=3$, we find the minimum cardi...
Saved in:
Published in: | The Electronic journal of combinatorics 2020-05, Vol.27 (2) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Star graph $S_n$, $n\ge 3$, is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\{(12),(13),\ldots,(1n)\}$. In this work we study eigenfunctions of $S_n$ corresponding to the second largest eigenvalue $n-2$. For $n\ge 8$ and $n=3$, we find the minimum cardinality of the support of an eigenfunction of $S_n$ corresponding to the second largest eigenvalue and obtain a characterization of eigenfunctions with the minimum cardinality of the support. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/9147 |